Probability and Statistics 1. Exercises 7

- 1. Let $X \sim N(0, 1)$ and Y = |X|.
 - 1. What is the cumulative distribution function of Y?
 - 2. What is the probability density function of Y?
 - 3. Compute E[Y].
- 2. Compute the convolution of continuous random variables X, Y if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$.
- 3. Let X and Y be jointly continuous random variables with finite mean and variance. Prove that $\rho(X, Y) = 1$ if and only if Y = aX + b almost surely, for some a > 0. Prove that $\rho(X, Y) = -1$ if and only if Y = aX + b almost surely, for some a < 0.
- 4. * The random graph G(n, p) is an undirected (labeled) graph on n vertices such that each of the $\binom{n}{2}$ edges is present in the graph independently with probability p. That is, G(n, p) defines a distribution over the set of undirected graphs on n vertices. If $G \sim G(n, p)$, i.e., G is a random graph with the G(n, p) distribution then for every fixed graph G_0 on n vertices with m edges, we have $P[G = G_0] = p^m (1-p)^{\binom{n}{2}-m}$.

For $G \sim G(n, p)$, show that

- (a) For p such that $\lim_{n \to \infty} pn = 0$, show that $\lim_{n \to \infty} P[G \text{ contains a triangle}] = 0$. (Here, we say that G does not contain a triangle with high probability.)
- (b) If $\lim_{n\to\infty} \frac{1}{pn} = 0$, show that $\lim_{n\to\infty} P[G \text{ contains a triangle}] = 1$. (Here, we say that G contains a triangle with high probability.)

(Hint: Use Markov's and Chebyshev's inequalities.)