Probability and Statistics 1. Exercises 7

1. Let $X \sim N(0,1)$ and $Y=|X|$.
2. What is the cumulative distribution function of Y ?
3. What is the probability density function of Y ?
4. Compute $E[Y]$.
5. Compute the convolution of continuous random variables X, Y if $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$.
6. Let X and Y be jointly continuous random variables with finite mean and variance. Prove that $\rho(X, Y)=1$ if and only if $Y=a X+b$ almost surely, for some $a>0$. Prove that $\rho(X, Y)=-1$ if and only if $Y=a X+b$ almost surely, for some $a<0$.
7. * The random graph $G(n, p)$ is an undirected (labeled) graph on n vertices such that each of the $\binom{n}{2}$ edges is present in the graph independently with probability p. That is, $G(n, p)$ defines a distribution over the set of undirected graphs on n vertices. If $G \sim G(n, p)$, i.e., G is a random graph with the $G(n, p)$ distribution then for every fixed graph G_{0} on n vertices with m edges, we have $P\left[G=G_{0}\right]=p^{m}(1-p)^{\binom{n}{2}-m}$. For $G \sim G(n, p)$, show that
(a) For p such that $\lim _{n \rightarrow \infty} p n=0$, show that $\lim _{n \rightarrow \infty} P[G$ contains a triangle $]=0$. (Here, we say that G does not contain a triangle with high probability.)
(b) If $\lim _{n \rightarrow \infty} \frac{1}{p m}=0$, show that $\lim _{n \rightarrow \infty} P[G$ contains a triangle $]=1$. (Here, we say that G contains a triangle with high probability.)
(Hint: Use Markov's and Chebyshev's inequalities.)
