Probability and Statistics 1. Exercises 5

Convention: $[n]$ stands for $\{1, \ldots, n\}$. * indicates a bonus question for students interested to explore the topic in more depth.

1. We say that the random variables X and Y are uncorrelated if the covariance $C(X, Y)=$ 0 , where the covariance is defined as $C(X, Y):=E[X Y]-E[X] E[Y]$. Define the random variable $X \in\{1,2,3\}$ with $P(X=i)=1 / 3$ for $i=1,2,3$. Consider the random variable $Y=1$, if $X=1$ and $Y=0$, otherwise. Show that X and Y are uncorrelated. Are X and Y independent random variables?
2. Let X, Y be two independent random variables having Poisson distribution with parameters λ, μ respectively.

- Find the distribution of the convolution $Z=X+Y$.
- Calculate $E[Z(Z-1)]$. (Hint: Use LOTUS.)
- Compute $\operatorname{Var}(Z)$.
- If $\mu=2 \lambda$, find $C(X, Z)$.

3. Let g be a convex function and X be a random variable. Prove that $E[g(X)] \geq g(E[X])$. This is known as Jensen's inequality. [Hint: Assume $g(X)$ is a convex function and the linear function $f(X)=a+b X$ is tangential to $g(X)$ at the point $E[X]$. Recall that the graph of a convex function lies entirely above its tangent at every point. Now, use the linearity of expectation.]
4. * Consider a permutation of $[n]$ chosen uniformly at random from all possible permutations (as before). Let the random variable X be the number of fixed points in this random permutation. Find $E[X]$ and $\operatorname{Var}(X)$.
