Probability and Statistics 1. Exercises 3

Convention: $[n]$ stands for $\{1, \ldots, n\}$. * indicates a bonus question for students interested to explore the topic in more depth.

1. Three friends decide to go swimming on some day of a given week but don't arrange the day. So, each one shows up at the swimming pool on a (uniformly) random day, independently. Consider the random variable X to be the number of people from these three who went on Friday. Find the probability distribution of X. Generalize this to n friends.
2. Let $X \sim G e o(1 / 2)$. Show that $(-2)^{X}$ does not have an expectation.
3. Prove the following properties of the cumulative distribution function F_{X} of a discrete random variable X
(a) F_{X} is non-decreasing
(b) $\lim _{t \rightarrow-\infty} F_{X}(t)=0$ and $\lim _{t \rightarrow \infty} F_{X}(t)=1$
(c) F_{X} is right-continuous.
4. Let X and Y be discrete random variables on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Prove that
(a) $f(X)$ is a discrete random variable,
(b) $X+Y$ is a discrete random variable,
(c) $\{X=Y\} \in \mathcal{F}$.
5. * Consider a permutation of $[n]$ chosen uniformly at random from all possible permutations. What is the probability that the permutation has exactly k fixed points? Determine its limit when k is fixed and $n \rightarrow \infty$.
