Probability and Statistics 1. Exercises 2

Convention: $[n]$ stands for $\{1, \ldots, n\}$. * indicates a bonus question for students interested to explore the topic in more depth.

1. We pick 3 cards from the top of a randomly shuffled standard deck with 52 cards. What is the probability that none of the three cards is a spade?
2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Using the continuity of probability from the lecture prove the following:
(a) Let $A_{1} \supseteq A_{2} \supseteq \ldots$ be a (decreasing) sequence of events. Show that

$$
\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)
$$

(b) Let C_{1}, C_{2}, \ldots be a sequence of arbitrary events. Show that

$$
\mathbb{P}\left(\bigcup_{n \in \mathbb{N}} C_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcup_{i=1}^{n} C_{i}\right), \quad \text { and } \quad \mathbb{P}\left(\bigcap_{n \in \mathbb{N}} C_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcap_{i=1}^{n} C_{i}\right) .
$$

3. Assume a Covid test is 95 percent effective in identifying the disease when a person is infected, whereas for non-infected people the test yields a negative result in 99 percent of the cases (and a false positive for the remaining 1 percent). If 0.5 percent of the population of a city actually have Covid, what is the probability a citizen is infected if their test was positive?
4. Let $\Omega=\{0,1\}^{n}$, equipped with the uniform measure; this describes an n-fold toss of a fair coin. For each $i \in[n]$, let A_{i} be the event that the i-th throw was a 1 . Let A_{n+1} be the event that the total number of 1 's is even. Show that $\left\{A_{1}, \ldots, A_{n+1}\right\}$ are pairwise independent but not (mutually) independent.
5. * Analyse the game of gambler's ruin with a biased coin. That is, with a fixed probability $0<p<1$ the coin falls heads and A gets 1 CZK from B, with probability $1-p$ the reverse happens. The rest of the setup is as in the unbiased version. What are the probabilities that player $A /$ player B wins the game?
