Probability and Statistics 1. Exercises

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Using the axioms of probability show that
(a) $\mathbb{P}(A)+\mathbb{P}(\Omega \backslash A)=1$ for all $A \in \mathcal{F}$.
(b) $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ for all $A, B \in \mathcal{F}$.
(c) $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$.
(d) $\mathbb{P}\left(\bigcup_{i \in \mathbb{N}} A_{i}\right) \leq \sum_{i \in \mathbb{N}} \mathbb{P}\left(A_{i}\right)$ for any sequence $\left(A_{i}\right)_{i \in \mathbb{N}}$ of events.
2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Fix an event $B \in \mathcal{F}$ with $\mathbb{P}(B)>0$ and define a function $Q: \mathcal{F} \rightarrow[0,1]$ by

$$
Q(A):=\mathbb{P}(A \mid B)
$$

Prove that (Ω, \mathcal{F}, Q) is a probability space.
3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of events (i.e. members of $\mathcal{F})$. Prove that the following are events
(a) Exactly one A_{i} holds. ${ }^{1}$
(b) Infinitely many A_{i} hold.
(c) All but finitely many A_{i} hold.
4. Let $S=\{0,1\}$ and $\Omega=2^{\mathbb{N}}$ - this describes an infinite sequence of coin tosses. Let \mathcal{F} be a σ-algebra that contains all sets of the form $A_{1} \times \cdots \times A_{k} \times S \times S \times \ldots$, where $k \in \mathbb{N}$ and $A_{1}, \ldots A_{k}$ are subsets of S.
(a) Let Fair be the set of all of infinite binary strings in which the proportion of 1's converges to $1 / 2$ (under processing the string 'left to right'). Prove that Fair $\in \mathcal{F}$.
(b) Similarly, let Conv be the set of all strings in which the proportion of 1's converges (to an unspecified value in $[0,1]$). Prove that $C o n v \in \mathcal{F}$. Hint: Analysis 1.

[^0]
[^0]: ${ }^{1}$ This stands for $\left\{\omega \in \Omega: \omega\right.$ belongs to exactly one of the $\left.A_{i}\right\}$, and similarly for the other questions.

