Probability and Statistics 1. Exercises

- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Using the axioms of probability show that
 - (a) $\mathbb{P}(A) + \mathbb{P}(\Omega \setminus A) = 1$ for all $A \in \mathcal{F}$.
 - (b) $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ for all $A, B \in \mathcal{F}$.
 - (c) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B).$
 - (d) $\mathbb{P}(\bigcup_{i\in\mathbb{N}}A_i) \leq \sum_{i\in\mathbb{N}}\mathbb{P}(A_i)$ for any sequence $(A_i)_{i\in\mathbb{N}}$ of events.
- 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Fix an event $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$ and define a function $Q : \mathcal{F} \to [0, 1]$ by

$$Q(A) := \mathbb{P}(A \mid B).$$

Prove that (Ω, \mathcal{F}, Q) is a probability space.

- 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $(A_i)_{i \in \mathbb{N}}$ be a sequence of events (i.e. members of \mathcal{F}). Prove that the following are events
 - (a) Exactly one A_i holds.¹
 - (b) Infinitely many A_i hold.
 - (c) All but finitely many A_i hold.
- 4. Let $S = \{0, 1\}$ and $\Omega = 2^{\mathbb{N}}$ this describes an infinite sequence of coin tosses. Let \mathcal{F} be a σ -algebra that contains all sets of the form $A_1 \times \cdots \times A_k \times S \times S \times \ldots$, where $k \in \mathbb{N}$ and A_1, \ldots, A_k are subsets of S.
 - (a) Let *Fair* be the set of all of infinite binary strings in which the proportion of 1's converges to 1/2 (under processing the string 'left to right'). Prove that $Fair \in \mathcal{F}$.
 - (b) Similarly, let *Conv* be the set of all strings in which the proportion of 1's converges (to an unspecified value in [0, 1]). Prove that $Conv \in \mathcal{F}$. Hint: Analysis 1.

¹This stands for $\{\omega \in \Omega : \omega \text{ belongs to exactly one of the } A_i\}$, and similarly for the other questions.