
Data Structure I: Tutorial 7
Exercise 1. Linear probing stores n elements directly inside an array of size m ≥ n so that
every position of the array contains at most one element. A new element x is inserted at the
first position after h(x) (modulo m). How to implement operations Find and Delete?

Cuckoo hashing: Given two hash functions h1 and h2, a key x can be stored in h1(x) or
h2(x). One position can store at most one element. Insertion of an element x is illustrated
here.

a c e f h i k l m n o r s

h1(x)

h1(a) or h2(a)

h1(y)

1 pos ← h1(x)
2 for 6 logm-times do
3 if T[pos] is empty then
4 T[pos] ← x
5 return

6 swap(x, T[pos])
7 if pos == h1(x) then
8 pos ← h2(x)
9 else

10 pos ← h1(x)

11 rehash()
12 insert(x)

Exercise 2. Rehash function creates a new pair of hashing function and reinsert all elements
based on them. However, be very careful that rehash uses the function insert which may fail,
so another rehash may be needed, and so on. Furthermore, keep in mind that function insert
always has one element which is not stored in the array, so do not lose it during rehash.
Discuss implementation of the function rehash.

1

0 10 20 30 40 50 60
0

20

40

60

80

100

The ratio n/m [%]

S
u
cc
es
fu
ll
ra
te

of
in
se
rt

w
it
h
ou

t
re
h
as
h
[%

]

0 10 20 30 40 50 60

5

10

15

The ratio n/m [%]

A
ve
ra
g
e
n
u
m
b
er

of
sw

ap
s
d
u
ri
n
g
on

e
in
se
rt

Swaps per insert

Definition 3. A system H of hashing functions is c-universal, if for every x, y ∈ U with
x ̸= y the number of functions h ∈ H satisfying h(x) = h(y) is at most c|H|

m where c ≥ 1.
Equivalently, a system H of hashing functions is c-universal, if uniformly chosen h ∈ H
satisfies P [h(x) = h(y)] ≤ c

m for every x, y ∈ U with x ̸= y.

Definition 4. A set H of hash functions is (2, c)-independent if for every x1, x2 ∈ U with
x1 ̸= x2 and z1, z2 ∈M the number of functions h ∈ H satisfying h(x1) = z1 and h(x2) = z2
is at most c|H|

m2 . Equivalently, a set H of hash functions is (2, c)-independent if randomly
chosen h ∈ H satisfies P [h(x1) = z1 and h(x2) = z2] ≤ c

m2 for every x1 ̸= x2 elements of U
and z1, z2 ∈M .

Note that buckets z1 and z2 can be the same but elements x1 and x2 must be distinct.

Definition 5. A set H of hash functions is (k, c)-independent if randomly chosen h ∈ H
satisfies P [h(xi) = zi for every i = 1, . . . , k] ≤ c

mk for every pair-wise different elements
x1, . . . , xk ∈ U and z1, . . . , zk ∈M .
A set H of hash functions is k-independent if it is (k, c)-independent for some c ≥ 1.

Definition 6. Let p ≥ |U | ≥ m be a prime where U = [u]. We define the hash function

ha,b(x) = (ax+ b mod p) mod m.

Hashing system Multiply-mod-prime is

H = {ha,b; a, b ∈ [p]}

Theorem 7. Hash system Multiply-mod-prime is 2-universal and 2-independent.

Definition 8. Assume that u = 2w and m = 2l for some integer w, l. We define the hash
function

ha(x) = (ax mod 2w) >> (w − l)

Hashing system Multiply-shift is

H = {ha; a is odd w-bits integer }

2

Theorem 9. Hash system Multiply-shift is 1-universal and 2-independent.

Exercise 10. • Prove that if a hashing system is (k, c)-independent, then it is (k− 1, c)-
independent.

• Prove that if a hashing system is (2, c)-independent, then it is also c-universal.

• Prove that 1-independent hashing system may not be c-universal.

Definition 11. Tabular hashing

• Assume that u = 2w and m = 2l and w is a multiple of an integer d

• Binary code of x ∈ U is split to d parts x0, . . . , xd−1 by w
d bits

• For every i ∈ [d] generate a totally random hashing function Ti : [2
w/d]→M

• Hashing function is h(x) = T0(x
0)⊕ · · · ⊕ Td−1(x

d−1)

⊕ denotes bit-wise exclusive or (XOR).

Theorem 12. Tabular hashing is 3-independent, but it is not 4-independent.

3

