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1. Introduction

1.1 Preliminaries
Let G be a graph without loops and multiple edges. A drawing D of G in the
plane is the image of a mapping that maps vertices to distinct points and edges
to continuous arcs connecting the images of their endpoints. We sometimes do
not distinguish between a graph and its drawing, in particular, we identify edges
and the arcs representing them, and vertices with the points representing them
as well. For simplicity, we assume that the following four conditions are satisfied:

1. no edge goes through a vertex that is not its endpoint,

2. no two edges touch at an interior point,

3. no three edges meet at one common interior point,

4. any two edges share a finite number of intersections.

A crossing in D is an interior point of two edges in which they intersect. The
crossing number cr(D) of a drawing D is the number of crossings in D. The
crossing number cr(G) of a graph G is the minimum crossing number of D over
all drawings D of G.

A drawing is simple if there are no two edges that intersect more than once.
Here, a common endpoint of two edges is counted as their intersection. It is easy
to prove that a drawing of every graph minimizing the number of crossings is
simple.

In this thesis, we study the crossing numbers of complete graphs. First, we
study them from a theoretical point of view. We present a compact survey about
the recent progress on the Harary–Hill conjecture, including all the classes for
which the conjecture is known to hold. We identify a wrong argument used in
the latest article by Mutzel and Oettershagen [1]. Second, we create a program
for generating and visualizing simple drawings of Kn. As a result of our program,
we create a database of simple drawings of Kn with n ≤ 8. We use this database
to verify a conjecture of Balko, Fulek, and Kynčl for small simple drawings.

1.2 History
The problem to determine the minimum number of crossings of some graph is
notoriously difficult in general. Even for special classes of graphs it is considered
as one of the most well-known and oldest combinatorial problems about graph
drawings.

This problem for the graph K3,3 is known as the House-and-utilities problem [2]
(or Three utilities problem) and it states,

“Assume there are three cottages on a plane and each cottage should
be connected to the water, gas, and electricity companies by pipes. Is
it possible to connect cottages with companies in such a way that no
pipes cross?”
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(a) The three cottages (blue) and three
companies (red).

(b) The cottages and the companies con-
nected by pipes with only one intersec-
tion.

Figure 1.1: Three utilities problem.

This problem was described by mathematical puzzler Henry Dudeney “as old
as the hills” and “an extinct volcano that burst into eruption in a surprising
manner”. In fact, it is much older than gas or electricity. However, it is easy to
see that one crossing is needed and also sufficient here.

Paul Turán was one of the first mathematicians who dealt with this kind of
problems. He thought about these questions during his forced labor in a brick
factory during WWII in 1944 [3]. He had to carry bricks on small wheeled trucks
from some kilns to storage yards. All the kilns, where the bricks where stored,
were connected to all the storage yards by rails. The crossings of the rails made
the labor most difficult, because that was the place where the bricks often fell
down from the truck.

So Turán’s idea was to minimize the number of crossing to save time and
energy. Nevertheless, it was not clear what is the minimum number of crossings
for an arbitrary number n of kilns and a number m of storage yards.

Formally, this problem is to determine cr(Km,n). Determining the crossing
number of the complete bipartite graphs Km,n is over seventy years old and it
was studied by polish mathematician Zarankiewicz in the 1950’s. Zarankiewicz
thought that he had proved that the minimum number of crossings in a drawing
of Km,n is equal to ⌊︃

n

2

⌋︃ ⌊︃
n− 1

2

⌋︃ ⌊︃
m

2

⌋︃ ⌊︃
m− 1

2

⌋︃
.

However, his solution was flawed. The error was not discovered until eleven years
after the publication. In fact, it remains an open problem even until now.

British artist Anthony Hill was interested in geometry and combinatorics and
without any deeper knowledge of higher mathematics explored a huge range of
geometrical and combinatorial objects. Unfamiliar with the Turán’s brick factory
problem, he drew some points in the plane, connected them all by arcs, and
started finding out how many times these arcs must cross each another [3].

Together with Harary, Hill posed the Harary–Hill conjecture which states that
the crossing number cr(Kn) of the complete graph on n vertices equals

Z(n) = 1
4

⌊︃
n

2

⌋︃ ⌊︃
n− 1

2

⌋︃ ⌊︃
n− 2

2

⌋︃ ⌊︃
n− 3

2

⌋︃
.

This conjecture was proved for n ≤ 12 [4] and it is known that for n = 13 we have
only two possible values of cr(K13) ∈ {223, 225} [5]. It was also proved for many
special classes of drawings. However, we still do not know whether this is really
the minimum value of the number of crossings. At least we know that Z(n) is
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an upper bound, as there are some well-known classes of optimal drawings which
exemplify the upper bound on the crossing number cr(Kn); see Figures 1.2, 1.3,
and 1.4 for examples.

Figure 1.2: An example of an optimal Harary–Hill drawing of K10.

Figure 1.3: An example of an optimal 2-page of K8 by Blažek and Koman [6].

It is also known that if the Harary–Hill conjecture is true for an odd n − 1,
then it is also true for n by an easy and well-known double-count argument [8].
However, the induction step from n− 1 even to n odd does not seem to be that
easy.

Proposition 1. For every even positive integer n, if cr(Kn−1) ≥ Z(n− 1), then
cr(Kn) ≥ Z(n).

Proof. We will prove the lower bound on cr(Kn) using any m and then substitute
m = n− 1. To prove the lower bound on cr(Kn), we consider all subgraphs Km

with m < n. Suppose cr(Km) = Z(m). There are exactly
(︂

n
m

)︂
subgraphs of Kn

of size m. Now, we make the lower bound estimation on cr(Kn) using the smaller
graphs. We know that we have at least(︂

n
m

)︂
Z(m)(︂

n−4
m−4

)︂
4



Figure 1.4: An example of an optimal drawing N5,5,1 based on the Harary–Hill
drawing with no two vertices sharing common face by Ábrego et al [7].

crossings, where we divided the product
(︂

n
m

)︂
Z(m) by the factor

(︂
n−4
m−4

)︂
, because

every crossing is induced by four vertices, which means that the crossing was
counted

(︂
n−4
m−4

)︂
times in the product.

Considering n−1 is odd then by substituting m = n−1 we get that cr(Kn) ≥
Z(n), as

cr(Kn) ≥

(︂
n

n−1

)︂
Z(n− 1)(︂
n−4
n−5

)︂ =
n · 1

4

⌊︂
n−1

2

⌋︂ ⌊︂
n−2

2

⌋︂ ⌊︂
n−3

2

⌋︂ ⌊︂
n−4

2

⌋︂
n− 4

=
n · 1

4

⌊︂
n−1

2

⌋︂ ⌊︂
n−2

2

⌋︂ ⌊︂
n−3

2

⌋︂
n−4

2

n− 4
=
⌊︃

n

2

⌋︃
· 14

⌊︃
n− 1

2

⌋︃ ⌊︃
n− 2

2

⌋︃ ⌊︃
n− 3

2

⌋︃
= Z(n).

1.3 Our goals
Despite the fact that the Harary–Hill conjecture is open for decades, there has
been a substantial progress on this problem recently. Many proofs of the Harary–
Hill conjecture for special kinds of drawings were published in the past eight
years. We think it is beneficial to sum up all the ideas of these proofs. Therefore
our first goal is to survey this recent progress on the Harary–Hill conjecture.

Our second goal is to develop a software tool designed to analyze simple
drawings of Kn in order to better understand the structure of these drawings.
Such a tool might give us a valuable insight into the structure of the problem of
determining cr(Kn) and potentially lead us to some further progress.

This tool consists of two parts. First, it contains a program to generate a
database of all simple drawings of Kn for sufficiently small values of n. Using
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this database, we can verify several hypotheses about cr(Kn) for small values
of n automatically. The second part of our software tool is a visualiser which
serves the user to visualise and modify the drawings from the database as well as
creating and analysing his/her own simple drawings of graphs. The visualiser is
also equipped with several features that capture the underlined structure of the
crossings of the visualised drawings.
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2. Recent progress on the
Harary–Hill conjecture
This chapter starts with preliminaries, where we introduce some basic defini-
tions and results about the crossing numbers of complete graphs. This is fol-
lowed by a survey of the recent progress on the Harary–Hill conjecture. This
chapter is focused on the lower bounds on the crossing number of the following
special classes of drawings of Kn: 2-page [9], cylindrical [10], x-monotone [11],
x-bounded [10], shellable [10], bishellable [12], seq-shellable [13], and, lastly, semi-
pair-shellable [1].

2.1 Preliminaries
The main concept in all the proofs we will go through are k-edges. OTheir origins
come from discrete geometry, more specifically, they relate to problems about so-
called halving lines and k-sets. The k-edges were first defined by Erdős et al. [14]
who considered them in the following geometric setting. Let P be a set of n
points and let (pi, pj) be a directed edge between two distinct points pi and pj

of P . The line determined by the edge (pi, pj) separates the plane into two open
half-planes, left and right. Let Pl be the set of points from P that lie in the left
half-plane. Similarly, let Pr be the set of points from P in the right half-plane.
We then call the edge (pi, pj) a k-edge if k = min{|Pl|, |Pr|}.

Later Lovász et al. [15] used the k-edges for determining a lower bound on the
crossing number of the rectilinear drawings of Kn. A drawing of Kn is rectilinear
if each edge is represented by a line segment. Note that every rectilinear drawing
is simple. The latest extension of the concept of k-edges was made by Ábrego et
al. [9] who generalized k-edges from rectilinear drawings of Kn to general simple
drawings of Kn. We now state this definition, but first we need to introduce some
auxiliary terms.

Define F(D) = R2\D as the set of faces of a simple drawing D of Kn. Denote
by F(D, v) the set containing exactly all the faces F ∈ F(D) incident to a vertex
v of D. Denote by F (v) the superface of F containing the face F in D − v.
Consider an oriented edge e = (u, v) in the drawing D and let F ∈ F(D) be any
fixed face of D. We call such a face F a reference face. Taking any distinct third
vertex w of D, the edge e together with w determines the triangle uvw. Since D
is simple, this triangle forms a closed curve separating the plane into two parts.
We can distinguish between the left and the right part of the separated plane by
orienting the closed curve forming the triangle uvw according to the orientation
of e. If the reference face F lies in the left part, we say that the triangle uvw has
the left orientation, otherwise, it has the right orientation; see Figure 2.1.

It is easy to see that every edge e of D determines n − 2 triangles together
with the remaining vertices of Kn. Each of these triangles has either left or right
orientation. Denote by i the number of the triangles containing e with the right
orientation. Then we know that there are n − i − 2 triangles containing e that
have the left orientation. The edge e is then a k-edge for k = min{i, n − i − 2}.
Note that, as in the early point of view by Erdős et al. [15], every edge of Kn is

7



u

v

u

v

Figure 2.1: Example of a triangle (1) with the outer face on the left and (2) with
the outer face on the right

a k-edge for some k ∈ {0, . . . ,
⌊︂

n
2

⌋︂
− 1}.

When the reference face of a simple drawing D of Kn is not specified, then it is
always the outer face of D. When the reference face is the outer face, a triangle
uvw (traced in this order) has the left orientation if and only if it is oriented
clockwise and it has the right orientation if and only if it is oriented counter-
clockwise. Also, there is always a spherical projection turning an arbitrary face
of D to the outer face.

It is good to realise that for different reference faces we can have different
numbers of k-edges. However, some properties of k-edges are preserved even
when we change the reference face; see Lemma 7 for an example. The definition
of k-edges can be extended even to so-called semisimple drawings [11], but we
will not discuss these drawings here.

There is a really nice connection between the number of crossings in a simple
drawing of Kn and the number of k-edges first shown by Lovász et al. [15] who
used it to prove a lower bound on the crossing number of rectilinear drawings
of Kn. We will show how Ábrego et al. [9] generalized this connection to simple
drawings of Kn. The main idea is to use a clever double counting argument. We
will now sketch the proof of this result because it is the basic building block of
the entire recent progress on the Harary–Hill conjecture.

Theorem 1. Let D be a simple drawing of Kn and let F ∈ F(D) be the reference
face. Then

cr(D) = 3
(︄

n

4

)︄
−
⌊n

2 ⌋−1∑︂
k=0

k(n− k − 2)Ek(D).

Proof. One can show using a simple case analysis that there are only three pair-
wise non-isomorphic types of drawings of K4. See Figure 2.2, where these three
types A, B, and C are depicted. We denote by TA, TB, and TC the numbers of
subdrawings of K4 of types A, B, and C, respectively, induced by D.

As remarked earlier, the key idea is to use a double counting argument. We
double count so-called separations. We say that an edge uv of D separates distinct
vertices w and t if the reference face F is, without loss of generality, on the left
of the triangle uvw and on the right of the triangle uvt (otherwise we can swap
the direction of the edge uv). The set {uv, w, t} is then called a separation.

It easy to see that a k-edge belongs to exactly k(n−2−k) separations, because
it determines k triangles oriented one way and n − 2 − k triangles oriented the

8



A B C

Figure 2.2: Types A, B, and C of simple drawings of K4 with 3, 2, and 2
separations, respectively. The separations, which correspond to 1-edges with
respect to the outer face, are coloured red.

other way with respect to F . Summing over all k-edges we thus get

3TA + 2TB + 2TC =
⌊n

2 ⌋−1∑︂
k=0

k(n− k − 2)Ek(D). (2.1)

The total number of induced subdrawings of K4 is
(︂

n
4

)︂
. In other words, we

have TA + TB + TC =
(︂

n
4

)︂
, which can be rewritten as TA =

(︂
n
4

)︂
− TB − TC . We

can use this equality to rewrite (2.1) as

3
(︄(︄

n

4

)︄
− TB − TC

)︄
+ 2TB + 2TC =

⌊n
2 ⌋−1∑︂
k=0

k(n− k − 2)Ek(D).

We clearly have cr(D) = TB + TC , as only the subdrawings of K4 of types B
and C contain a crossing. Plugging this into the above expression, we obtain the
desired equality

cr(D) = TB + TC = 3
(︄

n

4

)︄
−
⌊n

2 ⌋−1∑︂
k=0

k(n− k − 2)Ek(D),

which concludes the proof.

It follows from Theorem 1 that we can use estimates on the numbers k-edges
to obtain estimates on the number of crossings. Unfortunately, it turns out it is
difficult to obtain useful estimates on Ek(D). However, this can be overcome by
considering appropriately weighted k-edges. This motivates the following defini-
tions of cumulated k-edges.

Definition 2.1.1. Let D be a simple drawing of Kn and let Ek(D) be the number
of k-edges in D for k ∈ {0, . . . ,

⌊︂
n
2

⌋︂
−1} with respect to a reference face F ∈ F(D).

Then we denote by

E1
≤k(D) =

k∑︂
i=0

Ei(D)

the number of cumulated k-edges, by

E2
≤k(D) =

k∑︂
i=0

E1
≤i(D) =

k∑︂
i=0

(k + 1− i)Ei(D)

9



the number of double cumulated k-edges, and by

E3
≤k(D) =

k∑︂
i=0

E2
≤i(D) =

k∑︂
i=0

(︄
k + 2− i

2

)︄
Ei(D)

the number of triple cumulated k-edges.

The cumulated k-edges were first used by Lovász et al. [14]. The double cu-
mulated k-edges were introduced by Ábrego et al. [9] and the triple cumulated
ones by Balko, Fulek, and Kynčl [11]. In the literature, the number of cumu-
lated, double cumulated, and triple cumulated k-edges was typically denoted by
E≤k(D), E≤≤k(D), and E≤≤≤k(D), respectively.

The expression from Theorem 1 can be rewritten in terms of double cumulated
k-edges to the following form.

Corollary 1.1. Let D be a simple drawing of Kn. With respect to a reference
face F ∈ F(D), we have

cr(D) = 2
⌊n

2 ⌋−2∑︂
k=0

E2
≤k(D)− 1

2

(︄
n

2

)︄⌊︃
n− 2

2

⌋︃
− 1

2(1 + (−1)n)E2
≤⌊n

2 ⌋−2(D).

For triple cumulated edges, we get the following result.

Corollary 1.2. Let D be a simple drawing of Kn. With respect to a reference
face F ∈ F(D), we have

cr(D) = 2E3
≤⌊n

2 ⌋−2(D)− 1
8n(n− 1)(n− 3)

for odd n and

cr(D) = E3
≤⌊n

2 ⌋−2(D) + E3
≤⌊n

2 ⌋−3(D)− 1
8n(n− 1)(n− 2)

for even n.

When expressing cr(D) by k-edges and their cumulations, it is easy to see
that if we were able to give some lower bounds on the values of k-edges or their
cumulations, then it would give us some lower bound on the crossing number.
The idea, which is common to all the proofs, is to prove suitable lower bounds
on the number of k-edges and their cumulations for all k. It is not difficult to
show that if Ek(D) ≥ 3(k + 1) for each k ∈ {0, . . . ,

⌊︂
n
2

⌋︂
− 2}, then the Harary–

Hill conjecture is true for D. However, the lower bound Ek(D) ≥ 3(k + 1) does
not hold even for rectilinear drawings. Therefore, we consider only the following
cumulated versions.

Claim 2. Let D be a simple drawing of Kn and E1
≤k(D) be a number of cumulated

k-edges in D with respect to a reference face F ∈ F(D). If the lower bounds

E1
≤k(D) ≥ 3

(︄
k + 2

2

)︄

hold for each k ∈ {0, . . . ,
⌊︂

n
2

⌋︂
− 2}, then cr(D) ≥ Z(n).
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Claim 3. Let D be a simple drawing of Kn and E2
≤k(D) be a number of double

cumulated k-edges in D with respect to a reference face F . If the lower bounds

E2
≤k(D) ≥ 3

(︄
k + 3

3

)︄

hold for each k ∈ {0, . . . ,
⌊︂

n
2

⌋︂
− 2}, then cr(D) ≥ Z(n).

Claim 4. Let D be a simple drawing of Kn and E3
≤k(D) be a number of triple

cumulated k-edges in D with respect to a reference face F . If the lower bounds

E3
≤k(D) ≥ 3

(︄
k + 4

4

)︄

hold for k =
⌊︂

n
2

⌋︂
− 2 if n is odd and k ∈ {

⌊︂
n
2

⌋︂
− 2,

⌊︂
n
2

⌋︂
− 3} if n is even, then

cr(D) ≥ Z(n).

2.2 The 2-page and monotone drawings of Kn

Lovász et al. [15] proved a lower bound on the crossing numbers of rectilinear
drawings of complete graphs using estimates on cumulated k-edges and proved
the lower bound from Claim 2. However, there are many simple drawings of Kn

which do not satisfy Claim 2. The first such a class of simple drawings for which
the Harary–Hill conjecture was shown to be true were 2-page drawings [9].

Now we will proceed through the common part of all the proofs of the Harary–
Hill conjecture for restricted classes of drawings of Kn. Then we show the proof for
monotone drawings of complete graphs and we discuss so called 2-page drawings
afterwards.

2.2.1 The structure of simple drawings
We want to prove the inequalities from Claim 3 by double induction on k and
on the number of vertices n. We want to remove one ”nice” vertex, in this case
meaning a vertex incident to the outer face, and we also want to estimate the
number of double cumulated k-edges if we know the number double cumulated
(k − 1)-edges. It is easy to see that after removing one vertex v, the number k
for each edge can either remain the same or it can be reduced by one.

Let D be a simple drawing of Kn and let v be a vertex of D. An edge of D
is invariant with respect to v if it is a k-edge in D and also in D − v. From the
definition of E2

≤k(D) we know that an i-edge contributes to E2
≤k(D) with (k+1−i).

On the other hand, after removing the vertex v, an i-edge becomes either an i-
edge or an (i− 1)-edge. This means that it will contribute to E2

≤k−1(D− v) with
either (k − i) or (k − (i − 1)) = (k + 1 − i). In other words, an invariant edge
reduces the value it contributes to E2

≤k−1(D − v) by one when compared to the
value it contributes to E2

≤k(D). A non-invariant edge contributes to E2
≤k−1(D−v)

with the same value as to E2
≤k(D).

So there are three terms we need to know in order to express E2
≤k(D). First,

the number E2
≤k−1(D) of double cumulated (k − 1)-edges of the drawing D − v,

11



v

u1

u2

un−1
un−2

u3

un−3

···

Figure 2.3: The structure of k-edges around a vertex v on the outer face.

second, the number E1
≤k(D, D − v) of cumulated invariant k-edges, and, third,

the contribution E2
≤k(v) of edges incident to the vertex v. In other word we have

E2
≤k(D) = E2

≤k−1(D − v) + E1
≤k(D, D − v) + E2

≤k(v). (2.2)
Now, we estimate the three terms on the right side of (2.2) by induction on k

and on the number n of vertices. For the base of the induction, we show that for
k = 0 and for arbitrary simple drawing D′ of Kn with more than two vertices, we
have E2

≤0(D′) ≥ 3. This is true because every such a drawing contains at least
three edges incident to the outer face and the triangles containing such edges are
all oriented the same way. This shows that we have at least three 0-edges in D′

and thus E2
≤0(D′) ≥ 3.

Now for the induction step, let k ≥ 1 be an integer and let D be a simple
drawing of Kn with k ≤

⌊︂
n
2

⌋︂
− 2. From the induction hypothesis, the first term

E2
≤k−1(D−v) can be estimated from below by 3

(︂
(k−1)+3

3

)︂
= 3

(︂
k+2

3

)︂
because D−v

is also monotone or 2-page but this will be discussed later.
To estimate the third term E2

≤k(v) of (2.2), we apply the following lemma.
Lemma 5. Consider a simple drawing D of Kn and a vertex v on the outer face
of D. If we label vertices of D − v by u1, . . . , un−1 in the counter-clockwise order
around v, then the edges vui and uvn−i are (i−1)-edges for every i ∈ {1, . . . ,

⌊︂
n
2

⌋︂
};

see Figure 2.3.

Proof. When considering the edge vui of D, all the triangles vuiuj for j < i are
oriented clockwise and are oriented counter-clockwise for j > i. Otherwise v is
not on the outer face of D, which is a contradiction; see Figure 2.4. Thus vui

and vun−i are indeed (i− 1)-edges.

This means that the whole contribution of the edges incident to v in D to
E2

≤k(D) is E2
≤k(v) = 2∑︁k

i=0(k + 1− i) = 2
(︂

k+2
2

)︂
because vu1,. . ., vuk+1 are 0-,. . .,

k-edges and vun−k−1,. . ., vun−1 are k-,. . ., 0-edges for every k ≤
⌊︂

n
2

⌋︂
− 2.

Remark. We know that it is sufficient for Claim 3 to have k in {0, . . . ,
⌊︂

n
2

⌋︂
− 2}.

For k =
⌊︂

n
2

⌋︂
− 1, the lower bound on E2

≤k(v) does not have to hold because for n
even the edges vuk+1 and vun−k−1 merge.

12



···
vui

uj

Figure 2.4: The orientation of every triangle vuiuj with j > i is counter-clockwise
(dashed curve uiuj). On the other hand, since the drawing is simple and v is on
the outer face, the clockwise orientation (dotted curve uiuj) is a contradiction
because then v is not on the outer face.

2.2.2 Monotone drawings
Now, we show the proof of the Harary–Hill conjecture for so-called monotone
drawings of complete graphs by Balko, Fulek, and Kynčl [11].

Definition 2.2.1. A simple drawing D of a graph is monotone if each edge is
crossed by every vertical line at most once.

The last missing piece in the proof of the Harary–Hill conjecture for monotone
drawings is the estimate on the number of invariant edges. Until now, we did
not use the assumption that the drawing D is monotone, we only assumed that
D is simple. For a monotone drawing D of Kn, we sort the vertices by their
x-coordinates from left to right and we pick the rightmost vertex v = un, which
is obviously on the outer face.

Definition 2.2.2. Consider a vertex ui of D. The j topmost (bottommost) edges
at the vertex ui is the set of the first j edges of D with the left endpoint ui in the
clockwise (counter-clockwise), respectively, order around ui.

Lemma 6. Let D be a simple drawing of Kn and k ≤
⌊︂

n
2

⌋︂
− 2. Consider the

vertices u1, . . . , uk+1. Then, for each i ∈ {1, . . . , k + 1}, at least k + 2− i topmost
or bottommost edges at ui are invariant.

Proof. As we can see in Figure 2.5, the edge vui is either not among the k + 2− i
topmost or not among k + 2 − i bottommost edges at ui. First, consider the
vertex u1 on the outer face. By Lemma 5, there are 0-,. . ., k-edges and then
k-, . . ., 0-edges around u1. We also know, from the proof of Lemma 5, that an
edge e among the topmost (bottommost) k + 1 edges around u1 determines a
counter-clockwise (a clockwise) oriented triangle together with any other edge
which is above (below) e and a clockwise (a counter-clockwise) oriented triangle
with any other edge below (above) e. Without loss of generality, we assume that
vu1 is not among the k + 1 bottommost edges. Then every j-edge among the

13



· · ·
u1 ui v

· · ···
·

Figure 2.5: The red edge uiv and the k + 2 − i topmost and the bottommost
edges at v are all at most k-edges in D. The edge uiv in the upper half, which
means that we have at least k + 2− i edges going from left to right at ui in the
lower half and all of them are invariant. Some edges in the upper part can also
be invariant. For example, the topmost one is invariant here.

k + 1 bottommost edges at u1 remains a j-edge after removing v. Thus we have
at least k + 1 invariant edges at u1 with the left endpoint at u1.

Now, assume that all the vertices u1,. . ., ui−1 were removed. Then ui is on the
outer face because D is monotone. We can apply the same reasoning as before for
u1 to show that we have at least k+2−i invariant edges at ui with the left endpoint
at ui. Since after removing one vertex of D, each j-edge either stays a j-edge or
become a (j−1)-edge, we have at most (i−1)-, . . . , k-edges and then k-, . . . , (i−1)-
edges around the vertex ui in the drawing D − {u1, . . . , ui−1}. Without loss of
generality, we assume that vui is not among the k + 2 − i bottommost edges
around the vertex ui. Then these k + 2 − i edges are invariant with respect
to v. We also need to realize that k + 2 − i topmost and bottommost edges
at ui in D − {u1, . . . , ui−1} are disjoint sets. Therefore we need to check that
2(k + 2− i) ≤ (n− 1)− (i− 1), but this is trivial because k ≤

⌊︂
n
2

⌋︂
− 2.

Using Lemma 6 we immediately obtain the following bound.

Corollary 6.1. For every k ≤
⌊︂

n
2

⌋︂
− 2, we have

E1
≤k(D, D − v) ≥

k+1∑︂
i=1

(k − (i− 1) + 1) =
k+1∑︂
i=1

(k + 2− i) =
(︄

k + 2
2

)︄
.

Now, we have suitable lower bounds on all three terms on the right side
of (2.2). If we put them together, we obtain

E2
≤k(D) = E2

≤k−1(D − v) + E1
≤k(D, D − v) + E2

≤k(v) ≥

≥ 3
(︄

k + 2
3

)︄
+ 2

(︄
k + 2

2

)︄
+
(︄

k + 2
2

)︄
=

= 3
(︄

k + 3
3

)︄
,

which is exactly the estimate in Claim 3. So the assumption from Claim 3 is true
for monotone drawings and, consecutively, the Harary–Hill conjecture holds for
monotone drawings.

We recall three steps where we used the assumption that D is monotone.
The first step is considered when we wanted to apply induction hypothesis so we

14



needed that E2
≤k−1(D − v) ≥ 3

(︂
k+2

3

)︂
. Therefore we need to know that D − v is

also monotone which is trivial and that k − 1 ≤
⌊︂

n−1
2

⌋︂
− 2 which is also obvious

because k ≤
⌊︂

n
2

⌋︂
− 2.

The second step was when we found a vertex on the outer face. Here the
assumption was not really necessary as we can always pick a vertex and face
F ∈ F(D) incident to it and consider F to be the outer face.

The last time we used the assumption that D is monotone was in the part
about invariant edges. We needed to know that after removing the vertices
u1, . . . , ui−1, the vertex ui is on the outer face F . Suppose for a contradiction,
there is an edge e separating ui from the outer face. Then, however, there is no
vertex to the left of ui, which means that e should go around the vertex ui, in
other words, the vertical line going though ui intersects e at least twice, which
contradicts the fact that D is monotone.

In fact the proof works because monotone drawings contain the following
sequence of vertices ui that helps us to find sufficiently many invariant edges.
Definition 2.2.3. Let D be a simple drawing of Kn with a reference face F .
Let k be a non-negative integer, let v be a vertex incident to F , and let Sv =
(u1, . . . , uk+1) be a sequence of distinct vertices where ui ∈ V \ {v}. If for each
i ∈ {1, . . . , k + 1} the vertex ui is incident to the superface of F in the drawing
D − {u1, . . . , ui−1}, then we call such a sequence Sv simple.

2.2.3 2-page drawings
In this subsection, we consider so-called 2-page drawings of complete graphs.
This class of drawings is contained in the class of simple monotone drawings of
complete graphs and the Harary–Hill conjecture was known to be true for this
class even before simple monotone drawings [9]. However, the proof for 2-page
drawings uses a different notation and since these drawings are more specialized
than the monotone ones, we decided to state the proof for the monotone drawings
first.
Definition 2.2.4. A simple drawing D of Kn is 2-page if all vertices of D lie
on a line ℓ (called the spine) and each edge of D is fully contained in one of the
half-planes (called pages) determined by ℓ; see Figure 1.3.

Ábrego et al. [9] described the structure of 2-page drawings using a matrix
representation, which describes whether an edge is going through the upper or the
lower page separated by the spine. Although the structure of 2-page drawings is
represented differently, all parts of the proof for monotone drawings work, except
for the part about invariant edges discussed at the end of Subsection 2.2.2. We
can again suppose for a contradiction that after removing u1, . . . , ui−1, there is an
edge e separating ui from the outer face. However, this means that e goes around
the vertex ui. In other words, the spine is crossed by e, which is a contradiction.
So we have found a simple sequence also here and therefore the Harary–Hill
conjecture holds for 2-page drawings.

Ábrego et al. [9] also studied properties and the structure of optimal 2-page
drawings. They showed that there exists a unique optimal 2-page drawing of Kn

for any even n, while there are exponentially many optimal 2-page drawings of
Kn for n odd, up to sphere-homeomorphism.
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2.3 Shellable drawings of Kn

It turned out quickly that finding invariant edges is not always easy, but the proof
for monotone drawings can be strengthened. Therefore the family of drawings
for which the Harary–Hill conjecture is known to be true started to broaden up.
We have already seen that the assumption that our drawings are monotone or
2-page was needed only in one step and otherwise it was not really necessary.
The next authors Ábrego et al. [10] generalized the monotone drawings to a class
of so-called shellable drawings and proved that the Harary–Hill conjecture holds
for such drawings. To state the definition of shellable drawings, we need to state
some auxiliary terms.

Definition 2.3.1. ([10]) Let D be a simple drawing of Kn with a reference face
F ∈ F(D) and let s be a positive integer. The drawing D is s-shellable if there
exists a sequence v1, . . . , vs of distinct vertices of D such that, for all pairs of
positive integers r and t with 1 ≤ r < t ≤ s, the vertices vr and vt are both
incident to the superface of F in the drawing D − {v1, . . . , vr−1, vt+1, . . . , vs}.

For s ≥
⌊︂

n
2

⌋︂
and an s-shellable drawing of Kn, Ábrego et al. [10] proved the

Harary–Hill conjecture. Also, to simplify the discussion, the drawings with which
are s-shellable for s ≥

⌊︂
n
2

⌋︂
are called shellable.

Ábrego et al. [10] proceed with the proof little bit differently than we do.
They fix an s-shellable drawing D of Kn with a sequence v1, . . . , vs and k ≤
min(s − 2,

⌊︂
n−1

2

⌋︂
− 1). For each such k and D they apply induction over i ≤ k.

In every step they remove k− i vertices vs, . . . , vs−(k−i)+1 and prove the estimate
E2

≤i(D− {vs, . . . , vs−(k−i)+1} ≥ 3
(︂

i+3
3

)︂
using the induction step based on equality

(2.2). For i = 0, the estimate is trivial. The structure here is little bit different
since in our proof we do not need to fix k and do induction for each i ≤ k. We
immediately proceed using double induction based on equality (2.2).

Now, we prove the Harary–Hill conjecture for shellable drawings using simple
sequences. First, if D is s-shellable, then for each k ≤ min{s − 2,

⌊︂
n
2

⌋︂
− 2} we

have E2
≤k(D) ≥ 3

(︂
k+3

3

)︂
. This is trivial for k = 0 because then there are always

three 0-edges incident to F . Now, we show that s-shellability of D implies the
(s− 1)-shellability of D − v for v = vs. However, this is obvious, as we can only
forget vs, the last term of the sequence (v1, . . . , vs), and shorten the sequence
by vs to witness the (s − 1)-shellability of the drawing D − vs. Finally, to use
the induction step, we also need to know that k ≤ min{s − 2,

⌊︂
n
2

⌋︂
− 2} implies

k− 1 ≤ min{s− 2,
⌊︂

n
2

⌋︂
− 2}− 1 ≤ min{(s− 1)− 2,

⌊︂
n−1

2

⌋︂
− 2}. Therefore we can

use the induction step and get E2
≤k−1(D) ≥ 3

(︂
k+2

3

)︂
.

Now we can use the equality (2.2). The third term of (2.2) is estimated
because considering v = vs together with s-shellability implies that vs is incident
to the reference face F . To estimate the second term of (2.2), it suffices to show
that there is a simple sequence for every shellable drawing. We can consider v
to be the vertex vs incident to F in D, since considering r = 1 and t = s we
get that v1 and vs are both on the face F . Now it is easy to see that by taking
r = 1, . . . , k + 1 and t = s we get our simple sequence (v1, . . . , vk+1). Now we
need to show that the index r is always at most s − 1 because vs is taken as v
in order to use the definition of s-shellability. Then all vertices vi are incident
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to the superface of F in D − {v1, . . . , vi−1}. Since k ≤
⌊︂

n
2

⌋︂
− 2 and s ≥

⌊︂
n
2

⌋︂
, we

indeed have s− 1 ≥ r, as s− 1 ≥
⌊︂

n
2

⌋︂
− 1 ≥ k + 1 ≥ r.

We can now see that the class of shellable drawings is not the most general
one we can consider because we needed to use only the conditions for a subset of
pairs r, t and not for all of them. However, the class of s-shellable drawings with
s ≥

⌊︂
n
2

⌋︂
contains many well-known classes of simple drawings of Kn for which

the Harary–Hill conjecture is now known to be true. In particular, it contains
the following two classes.

Definition 2.3.2. A simple drawing of Kn is x-bounded if for any two vertices
vi and vj the edge vivj does not cross neither the vertical line going through vi

nor the vertical line going though vj.

We can easily see that the argument that worked for monotone drawings easily
translates to x-bounded ones.

Definition 2.3.3. A simple drawing of Kn is cylindrical if there are two concen-
tric circles that contain all the vertices of the graph Kn and no edge of Kn crosses
any of the circles.

Ábrego et al. [10] proved that simple drawings of Kn containing a cycle that
satisfies certain crossing-constraints is shellable. However, this structure is, in
our opinion, unnecessary because we only need to show that there is a simple
sequence in such drawings. To show that, consider a cylindrical drawing D of
Kn. By the pigeonhole principle, there is a circle C in D with at least s ≥

⌊︂
n
2

⌋︂
vertices. Consider some vertex v0 on C to be the vertex that we are about to
remove. Let v1, . . . , vk+1 be consecutive vertices on C that follow v0. We know
that the edge vivi+1 is not crossed by any other edge of D since vivi+1 and the
circle C form a closed curve C ′ that does not enclose any vertex of D. This
is because vi and vi+1 are consecutive vertices on C. Therefore any edge of D
should either go through the part of C ′ formed by C, which is impossible as D is
cylindrical, or it crosses the edge vivi+1 at least twice, which is also impossible as
D is simple. Therefore, we can choose the face F as the face determined by the
closed curve formed by v0v1 and C. Now, after removing v1, . . . , vi−1, the vertices
v0 and vi become consecutive on C and it is easy to see that the superface of F in
D−{v1, . . . , vi−1} is the face formed by C and by v0vi and therefore it is incident
to vi, which is exactly what we wanted to get a simple sequence. The part about
induction step is the same as for shellable ones.

2.4 Bishellable drawings of Kn

Ábrego et al. [12] further generalized the class of shellable drawings to the fol-
lowing more natural class of drawings of Kn.

Definition 2.4.1. ([12]) Let D be a simple drawing of Kn with a reference face
F ∈ F(D) and let s be a non-negative integer. The drawing D is s-bishellable if
there are two sequences a0, . . . , as and bs, . . . , b0, each containing distinct vertices
of D, such that
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Figure 2.6: An optimal drawing of K11 which is bishellable but not s-shellable
for any s ≥ 5.

1. for each i ∈ {0, . . . , s}, the vertex ai is incident to the superface of F in the
drawing D − {a0, . . . , ai−1},

2. for each i ∈ {0, . . . , s}, the vertex bi is incident to the superface of F in the
drawing D − {b0, . . . , bi−1}, and

3. for each i ∈ {0, . . . , s}, the set {a0, . . . , ai} ∩ {bs−i, . . . , b0} is empty.

In contrast to the s-shellable drawings of Kn, if the drawing D is s-bishellable,
then it is also (s − 1)-bishellable by shortening the sequences (a0, . . . , as) by as

and (bs, . . . , b0) by bs. Additionally, if D is s-bishellable, then the drawing D− v
for v = a0 is (s− 1)-bishellable when we shorten the sequence (bs, . . . , b0) by bs.

The Harary–Hill conjecture was proved for (
⌊︂

n
2

⌋︂
− 2)-bishellable drawings,

which are called just bishellable. Ábrego et al. [12] constructed infinitely many
bishellable drawing which are not shellable; see Figure 2.6.

Similarly as in the previous section about the shellable drawings, we would like
to prove the argument using simple sequences also here. First, we again need to
check whether we can apply induction on the first term of equality (2.2). We state
that if a drawing D of Kn is s-bishellable for s ≤

⌊︂
n
2

⌋︂
−2, then E2

≤s ≥ 3
(︂

s+3
3

)︂
. The

case for s = 0 is trivial because we have at least three 0-edges incident to F as D is
simple. Then, as we said before, if D is s-shellable, then D−a0 is (s−1)-shellable.
Then again, since s ≤

⌊︂
n
2

⌋︂
− 2, we also have s − 1 ≤

⌊︂
n
2

⌋︂
− 2 − 1 ≤

⌊︂
n−1

2

⌋︂
− 2.

And therefore we can apply the induction.
We can again easily see that for v = a0, and the sequence (bs, . . . , b0) our

argument for counting invariant edges also works. We can choose b0, . . . , bs to be
our simple sequence (v1, . . . , vs+1). The last term of equality (2.2) is determined
therefore the proof of the Harary-Hill conjecture for bishellable drawings works
the same.

Remark. If D is s-shellable witnessed by a sequence v1, . . . , vs, then it is also (s−
2)-bishellable. To see that, it suffices to set (a0, a1, . . . , as−2) = (v1, v2, . . . , vs−1)
and (b0, b1, . . . , bs−2) = (vs, vs−1, . . . , v2).
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2.5 Seq-shellable drawings
Both shellable and bishellable drawings were probably motivated by extending
the family of drawings for which the Harary–Hill conjecture holds. However, the
structure of shellable or bishellable drawings was created to prove the conjecture
for some known drawings which have not belong to any known class yet and the
structure we need was not the most general we could get. Therefore, Mutzel and
Oettershagen in [13] introduced the simple sequences (Definition 2.2.3) and used
them to extend the class of drawings for which the Harary–Hill conjecture is true.

Definition 2.5.1. ([13]) Let D be a simple drawing of Kn. We call D s-seq-
shellable for some non-negative integer s if there exists a reference face F ∈ F(D)
and a sequence of distinct vertices (a0, . . . , as) such that

1. for each i ∈ {0, . . . , s}, the vertex ai is incident to the face containing F in
the drawing D − {a0, . . . , ai−1} and

2. for each i ∈ {0, . . . , s}, the vertex ai has a simple sequence Si = (u0, . . . ,
us−i) with uj ∈ V \ {a0, . . . , ai} for all j ∈ {0, . . . , s − i} in the drawing
D − {a0, . . . , ai−1}.

As we can see, this is the definition we used all the time for the simple se-
quence generating invariant edges. As in the s-bishellable drawings, also the
s-seq-shellability of the drawing D implies (s − 1)-seq-shellabity for the draw-
ings D and D − v after choosing v = a0 and forgetting the simple sequence S0.
For simplicity, we call (

⌊︂
n
2

⌋︂
− 2)-seq-shellable drawings just seq-shellable. The

proof of the Harary-Hill conjecture works the same for seq-shellable drawings as
for bishellable drawings since s-seq-shellability of a drawing D implies (s − 1)-
seq-shellability of D − a0. The base of the induction is the same and, again,
s ≤

⌊︂
n
2

⌋︂
− 2 implies s− 1 ≤

⌊︂
n
2

⌋︂
− 2− 1 ≤

⌊︂
n−1

2

⌋︂
− 2 and the simple sequence S0

is given.

Remark. Note that every s-bishellable drawing is also a s-seq-shellable draw-
ing. We can either consider (a0, . . . , as) := (a0, . . . , as) and simple sequences
Si = (b0, . . . , bs−i), or (a0, . . . , as) := (b0, . . . , bs) and simple sequences Si =
(a0, . . . , as−i). Here we can see, that s-bishellability is a stronger constraint than
the s-seq-shellability; see Figure 2.7.

This concludes all the known progress about the classes for which Harary–Hill
conjecture is true due to induction argument on double cumulated k-edges (using
Claim 3). However, there are still many drawings for which there exists a face
for which Claim 3 does not hold; see Figure 2.8. It easy to see that this claim is
stronger than the Harary–Hill conjecture. However, when we rewrite Theorem 1
into Corollary 1.2 we can see that, at least for some number k, Corollary 1.2 and
the Harary–Hill conjecture are of the same strength. There is no known example
of a simple drawing of Kn that does not satisfy the inequalities from Claim 4 for
any k ≤

⌊︂
n
2

⌋︂
− 2.
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Figure 2.7: A drawing of K11 which is seq-shellable but it is not bishellable.

Figure 2.8: A simple drawing of K6 with five 0-edges (denoted red) and five 2-
edges (denoted yellow). In this drawing D, we have E2

≤1(D) = 5(1 + 1 − 0) =
5 · 2 = 10 < 12 = 3

(︂
1+3

3

)︂
.

2.6 Semi-pair-shellable drawings of Kn

In this section, we will show a potentially useful lemma for further progress and
also a further generalization of seq-shellable drawings by Mutzel and Oettersha-
gen [1]. We sketch their proof of the claim that the Harary–Hill conjecture is true
for semi-pair-shellable drawings and we show that this proof is not correct. As
we stated above, there are some drawings for which we can find a reference face,
for which Claim 3 does not hold. To overcome this issue, we consider the triple
cumulated edges instead of the double cumulated ones.

We can easily modify our previous proof based on (2.2) to use the triple

20



cumulated edges. The modified equality (2.2) states

E3
≤k(D) = E3

≤k−1(D − v) + E2
≤k(D, D − v) + E3

≤k(v). (2.3)

By Lemma 5 applied to the face F incident to the vertex v, the term E3
≤k(v)

is equal to 2
(︂

k+3
3

)︂
and the lower bound on E3

≤k−1(D− v) is equal to
(︂

k+3
4

)︂
by the

induction argument from Claim 4 applied for all k ≤
⌊︂

n
2

⌋︂
− 2.

Now we will state a crucial definition from [1].
Definition 2.6.1. Let D be a simple drawing of Kn and let v ∈ V . Let Pv =
(u0, . . . , u⌊n

2 ⌋−2) be a sequence of distinct vertices from V \ {v}. We call Pv a
pair-sequence of v if it satisfies the following two conditions

1. if n is odd then, for all even j ∈ {0, . . . ,
⌊︂

n
2

⌋︂
− 2}, the vertex uj is incident

to a face F ∈ F(D − {u0, . . . , uj−1}, v). If j + 1 ≤
⌊︂

n
2

⌋︂
− 2, then uj+1 is

incident to the superface of F in the drawing D − {u0, . . . , uj}.

2. If n is even, then u0 is incident to a face F ′ ∈ F(D, v) and for all odd
j ∈ {1, . . . ,

⌊︂
n
2

⌋︂
− 2}, the vertex uj is incident to the a face F ∈ F(D −

{u0, . . . , uj−1}, v). If j + 1 ≤
⌊︂

n
2

⌋︂
− 2, then uj+1 is incident to the superface

of F in the drawing D − {u0, . . . , uj}.
Definition 2.6.1 is written slightly differently than the one in [1], because

Mutzel and Oettershagen [1] require uj+1 to be incident to some face even if
there is no vertex uj+1. Although the definition from [1] is more compact, we
consider two cases, as our definition exactly states how the sequences should look
like depending on the parity.

We can easily see that Definition 2.6.1 is a generalization of the simple se-
quence from Definition 2.2.3 for k =

⌊︂
n
2

⌋︂
− 2, where we can now change the face

in ”every second” step. We need to show that even if we change the face, there
are enough invariant edges. The reason why we are considering changing the face
is the following lemma.
Lemma 7. Let D be a simple drawing of Kn with a reference face F and let v ∈ V
incident to F . For n odd, the number E2

≤⌊n
2 ⌋−2(D, D − v) of double cumulated

invariant edges is the same with respect to any face F ∈ F(D, v) and the superface
of F in D − v.
Proof. We will consider equality (2.3) and we put the term with double cumulated
invariant edges on the left hand side to obtain

E2
≤⌊n

2 ⌋−2(D, D − v) = E3
≤⌊n

2 ⌋−2(D)− E3
≤⌊n

2 ⌋−3(D − v)− E3
≤⌊n

2 ⌋−2(v). (2.4)

Now we would like to argue that the right side of (2.4) remains the same for
every face F ∈ F(D, v). By Corollary 1.2, the first term is the same for all
faces F ∈ F(D) because it depends only on cr(D) which is determined by the
drawing D since n is odd. The second term is the same through all faces F ∈
F(D, v) because after removing the vertex v each F is contained in the common
superface F (v). The last term is trivial, because we consider only faces around
the vertex v where the term is equal to 2

(︂⌊n
2 ⌋+1

3

)︂
. It means that all the terms

remains the same for all faces in F(D, v).
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This is where the motivation for Definition 2.6.1 of a pair-sequence came from.
Mutzel and Oettershagen [1] tried to prove that a pair-sequence also guarantees
enough invariant edges. We now sketch their proof and later we point out a
mistake in their argument.
Lemma 8. Let D be a simple drawing of Kn and let v ∈ V . If v has a pair-
sequence with the reference face F ∈ F(D), then E2

≤⌊n
2 ⌋−2(D, D − v) ≥

(︂⌊n
2 ⌋+1

3

)︂
.

Proof. Let k =
⌊︂

n
2

⌋︂
−2. We will consider n odd. For n even, the proof is analogous

except we start by removing only a single vertex u0.
As in the proofs of Claim 3 for the previous classes of drawings, we consider the

vertex u0 which contributes at least
(︂

k+2
2

)︂
invariant edges because it is incident

to the reference face F0. The vertex u1 contributes with at least
(︂

k+2−1
2

)︂
to

E2
≤k(D, D−u0) because every j-edge in D−u0 is at most (j +1)-edge in D. Now,

the number of vertices in D − {u0, u1} is again odd, so we can apply Lemma 7
and change the face F0, since the number E2

≤k−1(D−{u0, u1}, D−{u0, u1, v}) is
the same for every reference face F1 ∈ F (D − {u0, u1}, v). After picking such a
new reference face F1, we count the invariant edges in the same way. Again, we
pick two vertices ui and ui+1 incident to F1, as in the simple sequence, we note
that there are at least

(︂
k+2−i

2

)︂
in invariant edges at the vertex ui and then we

change the face again to F2 and we repeat. Generally, after removing vertex ui,
where i is odd, we can change to face F i+1

2
The lower bounds sum up to

k∑︂
i=0

(︄
k + 2− i

2

)︄
=
(︄

k + 3
3

)︄
=
(︄⌊︂

n
2

⌋︂
+ 1

3

)︄
.

The definition of semi-pair-shellable drawings is then following.
Definition 2.6.2. Let D be a simple drawing of Kn for odd n with a reference
face F . We call D an semi-pair-shellable drawing if there is vertex v which has
pair-sequence and D − v is seq-shellable with respect to the reference face F .

We can easily see that if the proof for pair-sequence works, then the Harary–
Hill conjecture is also true for this class of drawings because we satisfy the con-
ditions from Claim 4. In Figure 2.9 there is semi-pair-shellable drawing which
is not seq-shellable. The only new step with respect to the proof using simple
sequences was to change the face every “second” step. However, we claim that
this step is not correct. We will now show three reasons why Lemma 7 cannot be
used in this way. We focus on the first change of faces, namely F0 to F1 when n
is odd. Nevertheless, the argument can be applied during a change of other faces
analogously, and also for even n. Now we will discuss the three reasons in detail.

Consider the first change to F1. After this change, we would like to make
estimates on invariant edges for vertices u2 and u3. The estimates are based on
the fact that after removing the vertices u0, u1 and u0, u1, u2, the vertices u2 and
u3, respectively, are incident to the reference face F1. Therefore in the drawings
D−{u0, u1} and D−{u0, u1, u2} we have 0-, . . ., (k− 1)- and then (k− 1)-, . . .,
0-edges by Lemma 5. So our lower bound on the contribution of the vertex ui

to E2
≤k(D, D − v) is

(︂
k+2−i

2

)︂
because we know that after removing i vertices, the

j-value of an edge can be reduced by at most i.
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F
u0

u1

u2

u3

Figure 2.9: Semi-pair-shellable drawing of K11 that is not seq-shellable with v
having pair-sequence (u0, u1, u2, u3).

1. However, the argument for changing the face is that the number E2
≤k−1(D−

{u0, u1}, D − {u0, u1, v}) is the same for all faces in F(D − {u0, u1}, v).
Nevertheless, there can be some (k − 1)-edges in D − {u0, u1} which are
(k + 1)-edges in D, we call them bad, and therefore are not counted in
E2

≤k(D, D − v). This is an issue because although the value E2
≤k−1(D −

{u0, u1}, D − {u0, u1, v}) remains the same, we know that the invariant
edges at vertices u0, u1 could contribute more to E2

≤k(D, D − v) for the
reference face F0 than for the reference face F1. If there are more bad edges
for the face F0 than for F1 we can, in fact, consider more invariant edges
contained in E2

≤k(D, D−v) than there truly are if we count them in a more
precise way. Otherwise it just not indicative value for changing the face.
First, we denote by E2

≤k(D, D − v)(u) the number of double cumulated
invariant edges in D with respect to v that are incident to u. To state the
more precise way of counting the invariant edges, we rewrite the number
E2

≤k(D, D − v) of double cumulated invariant edges inductively to obtain
the following equality similar to (2.2):

E2
≤k(D, D − v) = E2

≤k−1(D − u, D − {u, v})+
+E≤k(D, D − {u, v}) + E2

≤k(D, D − v)(u).
(2.5)

The first term on the right side is just the number of invariant double
cumulated (k − 1)-edges in D − u with respect to v because we know that
every edge contained in E2

≤k−1(D− u, D−{u, v}) contributes with at least
the same value to E2

≤k−1(D− u, D−{u, v}) as to E2
≤k(D, D− v). The first

and the last term are usually used in the proofs to give a lower bound on
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the left-hand side. Now, assume that we are also able to count the middle
term E≤k(D, D − {u, v}) representing the invariant edges with respect to
both u and v. Those are the edges that contribute to E2

≤k(D, D − v) with
one more than to E2

≤k−1(D − u, D − {u, v}). This term is usually hard to
count. However, in the following counter-example, it can contradict the
proof of Lemma 8.
In Figure 2.10, we can see a drawing of K11 with k = 3. The dashed edges
are invariant with respect to v. The bad edges are brown. The 0-, 1-, 2-, 3-,
4-edges are colored red, orange, yellow, light green, dark green, respectively.

v

F

u0

u1

u2

u3

(a) The drawing of K11 with the face F0
before removing vertices u0, u1.

v

F

u2

u3

(b) The drawing of K11 with the face F0
after removing vertices u0, u1.

v

F

u0

u1

u2

u3

(c) The drawing of K11 with the face F1
before removing vertices u0, u1.

v

F

u2

u3

(d) The drawing of K11 with the face F1
after removing vertices u0, u1.

Figure 2.10: A counter-example for changing the reference face in semi-pair-
shellable drawings.

We can see, that the contribution to E2
≤k(D, D − v) for edges incident

to u0 and u1 is greater for F0 than for F1. Then after removing those
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vertices, there are more bad edges for F0 than for F1; see Subfigures 2.10b
and 2.10d. This means that we are considering more invariant edges that
remain invariant even in D in the term E2

≤k−1(D−{u0, u1}, D−{u0, u1, v})
for the reference face F1 than for F0.
Now we want to have a look at the invariant ≤k-edges in D. Specifically,
the invariant edges incident to u0, u1 with respect to the face F0 are 0-,
1-, 3-edge and 0-edge, respectively. The remaining invariant edges for v
are 0-, 1-, 3-edge and therefore E2

≤k(D) = 20; see Subfigure 2.10a. Then,
after the change to F1 the invariant edges incident to u0, u1 are none and
0-, 2-edge, respectively, and the remaining invariant edges are 0-, 2-, 2-,
2-, 3-, 3-, 3-, 3-edge; see Subfigure 2.10c. Thus, we get more invariant
edges with respect to F1 in the drawing D−{u0, u1} even though the term
E2

≤k−1(D − {u0, u1}, D − {u0, u1, v}) remains the same.
If we count invariant edges incident to u0, u1 for the reference face F0 and
for u2 and u3 for the reference face F1, then the term E2

≤k(D, D − v) sums
up to (4 + 3 + 1) + (4) + (4 + 2 + 2 + 1) + (2) = 22 > 20, where each bracket
represents the contribution of vertices u0, u1, u2, u3 when we do not omit
the middle term of equality (2.5).

2. In the proofs with the simple sequences or their similar variants, we con-
sidered at least (k− i + 1) invariant edges after removing i vertices. There-
fore, the value we really cared about was E≤k−i(D − {u0, . . . , ui−1}, D −
{u0, . . . , ui−1, v}) because we knew that these edges are also invariant in
D with respect to v. We could also consider all ≤k-edges in D which are
invariant in D and also in D−{u0, . . . , ui−1} as in equality (2.5) but as we
said before, this is usually hard to count.
As we mentioned in the previous paragraph, if we knew that the number
E≤k−2(D − {u0, u1}, D − {u0, u1, v}) remains the same, everything would
work fine. However, when only the term E2

≤k−1(D−{u0, u1}, D−{u0, u1, v})
remains the same, we can redistribute the values after the change so that
we can overestimate the value E2

≤k−2(D−{u0, u1}, D−{u0, u1, v}), which is
done in the proof of Lemma 8. In Figure 2.11, there is K9 (k = 2) where we
overestimate the term E2

≤k−2(D−{u0, u1}, D−{u0, u1}− v) after changing
the face from F0 to F1. For the reference face F0, see Subfigure 2.11a, is the
term E2

≤k−2(D − {u0, u1}, D − {u0, u1} − v) = 1 and for the reference face
F1 we get the term E2

≤k−2(D − {u0, u1}, D − {u0, u1} − v) = 2.

3. The last problem is, in fact, a combination of the two previous ones. Con-
sider a situation when we redistribute the edges in E2

≤k−1(D−{u0, u1}, D−
{u0, u1, v}) so that we overestimate the term E2

≤k−2(D − {u0, u1}, D −
{u0, u1, v}) as in part 2, so we can count invariant edges around some vertex
incident to F1 more easily. After the redistribution, there are less (k − 1)-
edges in D−{u0, u1}. This means that, before the change of face, there are
even more (k− 1)-edges and more of them are bad (as in part 1) than after
the change, so we overestimate the term E2

≤k(D, D − v) for the reference
face F0.
As we said before, we usually omit the middle term in equality (2.5) when
estimating the number of double cumulated invariant edges by simple se-
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vu0 u1

F

(a) The drawing of K9 with the face F0
before removing vertices u0, u1.

F
v

(b) The drawing of K9 with the face F0
after removing vertices u0, u1.

vu0 u1

F

(c) The drawing of K9 with the face F1
before removing vertices u0, u1.

v

F

(d) The drawing of K9 with the face F1
after removing vertices u0, u1.

Figure 2.11: A counter-example on the redistribution of invariant edges during
the first change of a reference face in semi-pair-shellable drawings.

quences. Therefore, we have not found a counter-example which gives a
higher value of E2

≤k(D, D− v) just by counting redistributed edges counted
in E2

≤k−2(D{u0, u1}, D−{u0, u1, v}) yet but we believe that there is such a
counter-example for larger drawings.

Thus, the proof for pair-sequences for odd n is incorrect. The problem remains
the same for even n, but only for the second and later changes of the face. The
difference is that when we consider a pair-sequence for n even, we can change the
face after removing {u0, . . . , uj−1} for j odd. In other words, we can change the
face first after removing only the vertex u0. The term E≤k−1(D−u0, D−{u0, v})
should be the same so that we can change the face and everything works as for
previous classes of drawings. However, E≤k−1(D − u0, D − {u0, v}) is the same
as the term in Lemma 7 for the drawing D − u0, because then n− 1 is odd and
therefore E≤⌊n−1

2 ⌋−2(D − u0, D − {u0, v}) = E≤k−1(D − u0, D − {u0, v}).
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3. Generating simple drawings
In this chapter, we describe our programs for generating databases of simple
drawings of Kn for small values of n and their visualization. We describe the
high-level idea of how they work and then we show some results obtained as
an application of our programs. We implemented three programs. First, we
have a checker, which finds rotation systems that can be realized as a simple
drawing. The second program is a generator, which constructs simple drawings
determined by the realizable rotation systems that are produced by the checker.
Finally, we have a visualizer, which is used to visualize the drawings produced
by the generator and which captures the structure of k-edges of a given drawing.
The ideas used to implement the checker and the generator are based on the
approach of Pammer [16].

3.1 Checker of realizable drawings
Since there are infinitely many simple drawings of Kn, we encode them to distin-
guish only finitely many classes of drawings so that the combinatorial properties
of all drawings of the same class are the same. In order to describe the structure
of simple drawings of Kn we consider so-called rotation systems and fingerprints.
In particular, we distinguish the drawings only up to weak-isomorphism.

Definition 3.1.1. Two simple drawings D and D′ of Kn are weakly isomorphic
if there is a bijection f from V (D) to V (D′) such that two edges ab and cd in
E(D) cross if and only if the two corresponding edges f(a)f(b) and f(c)f(d) cross
in D′.

We can see that cr(D) and cr(D′) are the same for weakly isomorphic D and
D′. Therefore, there are indistinguishable from the point of view of the Harary–
Hill conjecture. This is why it is sufficient for us to consider the simple drawings
up to weak isomorphism.

3.1.1 Creating rotation systems and fingerprints
Now we will look at rotations of vertices which are crucial in describing the weak
isomorphism of two drawings.

Definition 3.1.2. Let D be a simple drawing of Kn. The rotation of a vertex v
of D is a counter-clockwise cyclic order of edges incident to v. A rotation ρ(v)
of v is represented by a cyclic sequence of vertices incident to v. The rotation
system is then the set of rotations of all vertices in D.

The checker is based on the following result whose proof can be found in [16].

Claim 9. Two simple drawings of Kn with the same or inverse rotation system
are weakly isomorphic. Also, any two weakly isomorphic simple drawings of Kn

have either the same or inverse rotation system.
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Thus, if we want to check the Harary–Hill conjecture by computer, we only
need to go through all rotation systems and there are only finitely many of them.
Instead of going through all the rotation systems of a drawing, we can pick some
canonic one. Since a rotation is a cyclic sequence, we can choose, for example, the
lexicographically minimal rotation ρmin(v) at every vertex v. In other words, we
consider a so-called fingerprint FPRS = (ρmin(0), ρmin(1), . . . , ρmin(n− 1)) where
rotation ρmin(v) is lexicographically minimal.

This way, we reduce the number of rotation systems we need to generate.
However, there are still many possible relabelings of a given fingerprint. There-
fore, we choose the lexicographically minimal one to be our canonic fingerprint
CFPRS of FPRS. We can always relabel the vertices so that ρmin(0) is equal to
1 · · · (n − 1). We also know that if we are able to do that, then every canonic
fingerprint starts with the rotation ρmin(0) of the vertex 0. Sometimes in the
literature, the fingerprint is denoted only by FPRS = (ρmin(1), . . . , ρmin(n− 1)).
On the other hand, when we want to create the inverse rotation system and also
relabel it, we also need to invert and relabel ρmin(0). Therefore, we consider the
canonic fingerprint to be CFPRS = (ρmin(0), ρmin(1), . . . , ρmin(n − 1)) although
we know that ρmin(0) is determined uniquely.

We say that a rotation system ρ of Kn is realizable if there is a simple drawing
of Kn with the rotation system ρ. We generate realizable rotation systems induc-
tively. If we have all realizable (canonic) fingerprints of Kn−1, we can create all
realizable fingerprints of Kn by adding the new vertex n− 1 on every position in
each realizable fingerprint of Kn−1. This is because the subdrawing of Kn on ver-
tices 0, . . . , (n− 2) determines a realizable fingerprint of Kn−1. We create a new
potentially realizable fingerprint, by adding the vertex n − 1 on some positions
in all rotations ρ(0), . . . , ρ(n− 2) and then we create ρ(n− 1) arbitrarily.

Then, because we could create some of the rotation systems many times, we
find canonical fingerprints by trying all relabelings of vertices. In other words,
we try only those n relabelings that produce the rotation 1 · · · (n − 1). Then
we also invert the fingerprint and also try all relabelings producing the rotation
1 · · · (n−1), since we know by Claim 9 that drawings with inverse rotation systems
are weakly isomorphic and they are the same from our point of view. In this way,
we can find all potentially realizable fingerprints, and then we can proceed with
checking the realizability of a fingerprint.

3.1.2 Checking realizability of fingerprints
In this subsection, we describe a method how to check whether a given rotation
system is realizable. We combine the method by Pammer [16] with results by
Richter and Sullivan [17] to speed up the computations.

Constructing part

To check whether a fingerprint of Kn is realizable, we will try to construct a
simple drawing of Kn with such a fingerprint. Each simple drawing D is stored in
the half-edge structure. In this structure, every edge of D is represented by pairs
of oriented edges, where each pair is formed by opposite edges. This is because we
want to be able to easily move over an edge of D when creating D by iteratively
adding edges of Kn. Each edge contains an information about next, previous,
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opposite edges, the end points, vertex to and from and lastly face incident to
it. A vertex u contains an information consisting of a single edge (v, u). A face
contains an information consisting of a single edge incident to it; see Figure 3.1.

opposite(e)

e

next(e) prev(e)

Figure 3.1: The half-edge data structure.

The half-edge structure helps us to easily represent the drawing D. Our goal
is to create a drawing with a given fingerprint if it is realizable. Therefore we
need to force the edges of D to respect the rotation of a vertex of D. In order to
preserve the order, we represent every vertex v of D by a circle of dummy n− 1
vertices. Every dummy vertex contains the label determining which edge from
{v0, . . . , v(n− 1)} \ {vv} it is attached to; see Figure 3.2a. Since the drawing D
is simple, any of the edges cannot cross. In other words, the rotation around v
agrees with the given fingerprint.
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(a) A base star.
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(b) A base star with next edge between
vertices one and two.

Figure 3.2

We consider three arrays/stacks to store the information about which edge
should go where. The stack segments[index] stores all the edges. It is a stack be-
cause we proceed by recursion, and therefore pushing and popping edges to/from
the top is O(1) operation. The array starts[a][b] contains the information on
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which index in segments the edge determining the starting point of edge ab of D
is. The last array is four-dimensional blocked[a][b][c][d] for checking whether
edges ab and cd intersect. The values for edges that are on the circle representing
vertices are set to true because these are special cases that we do not want to in-
tersect anytime. Also, two edges sharing an endpoint are considered intersecting
because we consider only simple drawings of Kn.

We start with a base star which contains all edges incident to the vertex 0;
see Figure 3.2. Then we recursively try all possible ways how the edge 12 can
be drawn until we find the first realizable drawing of the edge 12. Due to the
heuristics we use and describe in the paragraph Heuristic part, we first want to
create Kn−1 and then pull all the edges incident to the vertex n − 1. Since the
base star creates the edge 0(n−1), all the edges incident to n−1 are meant except
of the edge 0(n − 1); see Figure 3.3. The decisions on lines 6, 9, 12, 15, and 18
of Algorithm 2 create edges of Kn−1 and then the edges incident to n − 1 as we
wanted. In contrast, Pammer [16] generates the edges incident to the vertices 1,
2, and so on first. His code is then little bit simpler, but the heuristics cannot be
applied that easily.

Algorithm 1 Initialization followed by realization of a fingerprint.
1: create base star()
2: find the way(starts[1][2], starts[2][1], 1, 2)

Heuristic part

To make the process of checking the realizability of Kn faster, we modified the
method by Pammer [16] using some results by Richter and Sullivan [17]. The
resulting heuristic slightly improved the running time of our program. First, we
use the following claim.

Claim 10 ([17]). Let D be a simple drawing of Kn with n ≥ 3 and let C be the
simple closed curve bounding a face of a simple drawing of Kn. If e is any closed
edge of Kn then e ∩C is either connected or consists of the two vertices incident
to e.

Due to Claim 10 we know that when we already realized a drawing of Kn−1
any edge e incident to the vertex n − 1 can be either connected or it consists of
the two vertices incident to e. Therefore e ∩ C has to be already connected or
consisting of the endpoints for any closed curve C of a face of Kn−1, because of
the simplicity of the drawing. Therefore if e already has two disjoint parts (not
only endpoints) on some closed curve C of any face in D then we can drop the
next calling of find the way function and immediately step back.

The second result from [17] that we use is the following one.

Claim 11 ([17]). Let D be a simple drawing of Kn with n ≥ 4 and let C be the
simple closed curve bounding any face of D. If e1, e2, e3 are distinct (open) edges
of D incident to a common vertex v of D then at least one of the intersections
C ∩ e1, C ∩ e2, and C ∩ e3 is empty.
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Algorithm 2 find the way(s, t, a, b)
1: function find the way(s, t, a, b)
2: seg ← segments[s] →next
3: while seg ̸= segments[s] do
4: if seg = segments[t] then
5: add edge(segments[s]→from ,segments[t]→from , a, b)
6: if b < n− 2 then
7: find the way((starts[a][b + 1], starts[b + 1][a], a, b + 1)
8: if (done) then return
9: else if (b = n− 2) and (a < n− 3) then

10: find the way(starts[a+1][a+2], starts[a+2][a+1], a+1, a+2)
11: if (done) then return
12: else if (b = n− 2) and (a = n− 3) then
13: find the way(starts[1][b + 1], starts[b + 1][1], 1, b + 1)
14: if (done) then return
15: else if (b = n− 1) and (a < n− 2) then
16: find the way(starts[a + 1][b], starts[b][a + 1], a + 1, b);
17: if (done) then return
18: else
19: realized ← realized + 1
20: done ← true
21: return
22: delete edge back()
23: first end ← seg → first end
24: second end ← seg → second end
25: if !blocked[a][b][first end][second end] then
26: blocked[a][b][first end][second end] ← true
27: intersect(-)
28: find the way(segments[s] → opposite , t, a, b)
29: if done then
30: blocked[a][b][first end][second end] ← false
31: return
32: undo intersect(-)
33: blocked[a][b][first end][second end] ← false
34: seg ← seg → next
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Similarly as before, we know that if we have already realized Kn−1, then any
edge e incident to the last vertex n − 1 cannot be on the boundary of the face
where two other edges incident to n− 1 already are, because the drawing we are
creating is simple. After realizing that we found “a wrong face” we can again
immediately step back.

Pre-detection part

As we build fingerprints by induction based on the realizable fingerprints of Kn−1
we also first check whether all induced copies of K4 are realizable because we
want to reveal a non-realizable fingerprint as soon as possible to speed up the
computation. The detection of a non-realizable induced K4 is based on the fol-
lowing fact. We can consider ρ(i) = (j, k, l) of a vertex i of a K4 induced by
vertices i, j, k, l and we rotate ρ(i) so that j = min{j, k, l}. If k > l, we call
ρ(i) negative, and positive otherwise. It can be shown by a simple case analysis
that the rotation system of K4 is realizable if and only if the number of negative
rotations is even. This can also be done by checking whether it is one of the
fingerprints of K4 that we have from the induction. This approach can also be
generalized to arbitrary induced drawings of Km with m ≤ n− 1. However, the
time complexity is then Ω(nm). Therefore we consider only m = 4 to reveal “the
most obvious” non-realizable fingerprints.

The checker is divided into t threads. We divide the file with fingerprints
for Kn−1 into t files with approximately the same number of lines. Then we
run t almost separate threads, except that the threads share a dictionary, which
consists of all already checked fingerprints, to check every fingerprint once.

3.2 Generator of drawings
The generator part of the program takes already realizable fingerprints of Kn.
The backbone is similar to the one in the checker part. In other words, we try
to construct a realization of a given fingerprint. There are some technical parts
about generating coordinates, but this is described in the attached programmer
documentation in more detail. Nevertheless, we now give a high-level overview
of these parts.

We need to create coordinates for each vertex. Since the vertex is represented
by a circle, we need to decide whether to have coordinates for each element or
to have one for the whole circle and identify them during the generating of the
realization. We applied the second approach.

The next technical step is creating an edge. More precisely, creating one part
of the edge between vertices or intersections a and b so that it does not cross any
other edge. When we want to create such an edge segment going only inside the
given face F , we first triangulate F using a triangulation T . Then we build the
graph where the vertices are the midpoints of the sides of triangles in T as well as
a and b. For each triangle t of T , we connect all midpoint of the edges of t. If one
of the vertices of t is either a or b then a or b is also connected to the midpoints.
Then we find the shortest path from a to b using the Dijkstra algorithm. We
know that since T is triangulation, the newly created edge segment stays in the
face F . We used library mapbox/earcut.hpp [18] for triangulation.
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Collinear points cause some troubles in our implementation of the triangula-
tion. In that case, our triangulation algorithm does not consider the middle point
in this collinear configuration as the vertex on the face F . For example, if the
middle point is one of a or b, our algorithm for creating such an edge segment
fails.

In order to avoid this situation, we consider two approaches. When we are
creating the line, we find some segment which we want to go through; see Al-
gorithm 2. This segment is divided into two halves and then we try to connect
the vertex or the intersection a with this new intersection b. In this situation,
we have clearly created three collinear points. In order for the triangulation al-
gorithm to consider all three points, we move the intersection in both directions
perpendicular to the line b it lies on. This solves our problem.

The second approach is whenever the collinear points are created during
pulling the edge segment through the face F , then the middle one is considered
redundant and therefore it is deleted.

When the face F is the outer one, we have no boundary for the triangulation,
so an auxiliary boundary is created. In our case, we create a quadrilateral, which
is far away from the drawing itself.

For this generating, as well as for checking, we use the multithreading ap-
proach. When we have n threads, we divide the file with fingerprints into files
with approximately the same number of lines. Then we consider n independent
threads and each of them generates coordinates for the corresponding file. This
distributing computing led to a significant improvement of the running time, the
generator is faster up to n times.

For each realizable fingerprint of Kn, checked by the checker part, the gener-
ator prints out

(︂
n
2

)︂
lines, where every line represents the coordinates of one edge.

The coordinates of vertices are considered as the endpoints of the edges.

3.3 Visualizer of drawings
The visualizer has three conceptual modes in which we can use them. First,
we introduce the structure that is common for the whole program. For each
drawing, we create a list of vertices, edges, and a dictionary that represents the
neighborhood. Since each edge created by the generator is composed of line
segments and can be quite long and twisted, we first try to make the realization
nicer using a force-directed algorithm.

3.3.1 Force-directed algorithm
We try to redraw the realized drawing by a force-directed algorithm with cross-
ing preserving properties introduced by Bertault [19]. The crossing preserving
property is crucial because we need to preserve rotations and also the weak-
isomorphism class. To see the difference between the drawings before and after
the redrawing algorithm has been applied, see Figure 3.4.
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Counting forces

Let D be a drawing of a graph. Let (x(v), y(v)) denote the coordinates of a
vertex v and let d(a, b) be the Euclidean distance between vertices a and b. The
parameter δ > 0 is the optimal length of edges. In each iteration, the algorithm
computes a force F (v) ∈ R2 for every vertex v and then moves v in the direction
F (v). The movement is restricted so that the crossings are preserved.

We consider three kinds of forces to redraw the drawing D. First, the attrac-
tion force between the vertices connected by an edge, second, the repulsion force
between all pairs of vertices, and lastly, the repulsion force between edges and
vertices.

The force applied to a vertex v is F (v) = (Fx(v), Fy(v)). The attraction and
repulsion forces of the vertex v, when we consider the other vertex u fixed, are

F a
x (u, v) = d(u, v)

δ
(x(u)− x(v)) and F r

x (u, v) = −δ2

d(u, v)2 (x(u)− x(v)).

To count the repulsion force F e(v, (a, b)), we consider the orthogonal projec-
tion iv of the vertex v onto the line (a, b). The force is applied to the vertex v if
the projection iv lies inside the segment (a, b) and if the distance between v and
iv is smaller than parameter γ. For the vertex v and an edge (a, b) disjoint with
v, we have

F e
x(v, (a, b)) =

⎧⎪⎪⎨⎪⎪⎩
−(y − d(v, iv))2

d(v, iv) (x(iv)− x(v)) if iv ∈ (a, b), d(i, iv) < γ

0 otherwise.

The overall force applied to the vertex v is

Fx(v) =
∑︂

(u,v)∈E

F a
x (u, v)+

∑︂
u∈V

F e
x(u, v)+

∑︂
(a,b)∈E

F e
x(v, (a, b))−

∑︂
u∈V,w∈W,
(v,w)∈E

F e
x(u, (v, w)).

We compute the coordinate Fy(v) analogously.

Counting zones

We know that it is crucial to preserve the rotation systems and therefore crossing
properties so we need to restrict the area where every vertex is allowed to move.
Bertault [19] introduced a zone Z(v) related to the vertex v. The zone Z(v)
consists of eight circular sectors Z0(v), . . . , Z7(v) with radii R0(v), . . . , R7(v), re-
spectively. The zone Z(v) is the area in which v is allowed to move to preserve
the crossing properties.

To count the radii Ri(v), we consider one vertex v and one edge (a, b) at time.
We distinguish two cases depending on whether the orthogonal projection iv lies
inside or outside the line segment (a, b).

Case 1: If iv lies on a line segment (a, b). We consider the sector Zs(v) which
contains the ray (v, iv). Then we update the values by letting
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Ri(v) = min
(︄

Ri(v), d(v, iv)
3

)︄
, i = r(s− 2), . . . , r(s + 2),

Ri(a) = min
(︄

Ri(a), d(v, iv)
3

)︄
, i = r(s + 2), . . . , r(s + 6),

Ri(b) = min
(︄

Ri(b),
d(v, iv)

3

)︄
, i = r(s + 2), . . . , r(s + 6),

where r(j) = j (mod 8).

Case 2: If iv does not lie on a line segment (a, b) we update the values as follows

Ri(v) = min
(︄

Ri(v), min(d(a, v), d(b, v))
3

)︄
, i = 0, . . . , 7

Ri(a) = min
(︄

Ri(a), d(a, v)
3

)︄
, i = 0, . . . , 7

Ri(b) = min
(︄

Ri(b),
d(b, v)

3

)︄
, i = 0, . . . , 7.

The correctness and the time complexity of the algorithm are described in [19].
As we can see in Figure 3.4, the algorithm helps to see the structure of drawings
a lot better.

3.3.2 Modes
The visualizer has three conceptual modes. The first one, based on the generator
part, reads the coordinates from the input files and transforms the stored repre-
sentation into the structure we described at the beginning of Section 3.3. The
visualizer then subdivides the edges, tries to redraw the realized drawing by the
force-directed algorithm described above, and then shortens edges that are too
long. The whole algorithm produces drawings with colored k-edges so that we can
see their structure; see Figure 3.4. The second mode allows the user to produce
his own drawings. The user can add vertices or edges in the drawings already
created by the generator. The third mode serves to verify our conjectures. The
visualizer is described in more detail in Chapter 4.

3.4 Applications
Balko, Fulek, and Kynčl [11] came with the following conjecture.
Conjecture 12. ([11]) Let k ≥ 0 be an integer and let D be a simple drawing of
a graph with at least

(︂
2k+3

2

)︂
edges. Then

E3
≤k ≥ 3

(︄
k + 4

4

)︄
with respect to all the faces of D as the reference faces.
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Conjecture 12 is a generalized version of Claim 4 even for Kn because it
considers every k up to

⌊︂
n
2

⌋︂
− 1 or

⌊︂
n
2

⌋︂
− 2 depending on the parity. We verified

this conjecture for all simple drawings D of Kn up to weak isomorphism and for all
faces of D for n ≤ 7. It would be also better to verify the conjecture for all simple
drawings up to (only) isomorphism because there can be some configuration of
faces we have not captured.

Although we have seen before that Claim 3 does not have to hold for all faces
of given drawing D of Kn (see Figure 2.8), we still think that it holds for at least
one face of D. Therefore, we state the following conjecture.

Conjecture 13. Let k ≥ 0 be an integer and let D be a simple drawing of a
graph with at least

(︂
2k+3

2

)︂
edges. Then

E2
≤k ≥ 3

(︄
k + 3

3

)︄

for at least one face of D as the reference face.

Similarly, we verified Conjecture 13 for all simple drawings of Kn up to weak
isomorphism for n ≤ 7. As we mentioned before, it would be better to verify the
conjecture for all simple drawings up (only) isomorphism. It also seems that there
is only a small number of faces that do not satisfy Claim 3. We are currently
trying to verify these conjectures also for n = 8 but the computation have not
finished yet.

We also used the visualizer to see the structure of the drawings and to find a
concrete counter-example to the argument by Mutzel and Oettershagen [1]; see
Figures 2.10 and 2.11.

We also used the database of simple drawings to know the numbers of simple
drawings of Kn up to weak isomorphism. The numbers we obtained match the
numbers by Pammer [16]; see Table 3.1.

n the number of non-weakly isomorphic drawings of Kn

3 1
4 2
5 5
6 102
7 11556
8 5370725
9 running

Table 3.1: The numbers of simple drawings of Kn with 3 ≤ n ≤ 8 up to weak
isomorphism.
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(a) Adding edge 12.
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(b) Adding edge 13.
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(c) Adding edge 14.
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(d) Adding edge 23.

0

0

1

2

4

0

1

3

4

0

2

3

4

0

1

2

3

3

2

1

4

(e) Adding edge 24.

0

0

1

2

4

0

1

4

0

2

3

4

0

1

2

3

3

2

1

4

(f) Adding edge 34.

Figure 3.3: Whole process of adding edges of K5 drawing when base star is
prepared.
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(a) Before redrawing (b) After redrawing

Figure 3.4: A drawing of K7 before and after redrawing using force-directed
algorithm.
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4. User’s guide
As we mentioned in Chapter 3, the program consists of three parts: the checker,
the generator, and the visualizer. The first two parts mainly serve as a basis for
the visualizer, which is the main application for users. In this chapter, we describe
the visualizer from the user’s point of view. The programmer documentation can
be found in the file generated by the code, which is contained among attachments
of the thesis and it is also recommended to read README.md file in order to install
everything necessary. The visualizer is designed for Windows.

The visualizer is displayed in one window that contains the canvas on the left,
where the drawing D can be drawn, and the buttons and the values of Ek(D),
E≤k(D), E2

≤k(D), E3
≤k(D) on the right; see Figure 4.1.

Figure 4.1: The design of the visualizer.

4.1 Canvas
Now we will have a more detailed look at the visualizer. We will start with
the canvas; see Figure 4.2. The canvas contains the drawing that we generated
or created manually. The vertices are colored blue, the intersections are colored
green, and the vertices for which we count invariant edges are colored purple. The
edges are colored depending on their k value. The color legend will be discussed
in Section 4.4. Finally, the invariant edges are the dashed ones.

4.2 Top bar
The top bar is divided into three parts, left, middle, and right.

• The left part consists of four buttons; see Figure 4.3a. After clicking on
the first one, you can set the smoothing constant on the first line, which
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Figure 4.2: The canvas with a drawing of K7.

determines the number of iterations of the redrawing force-directed algo-
rithm. There is a checker that accepts only non-negative integers. When
the text of the smoothing textbox is empty, the smoothing constant is set
to zero, and the default value is set to 10. The second line is for setting
any decimal number d to the automatic moving constant which allows
you to see d drawings per second. When there is either an invalid text or
an empty text, the value is set 1.0, which is also the default value.
To the right of the first button, there are the close button, the minimize
button, and the resize button, which passes between two states. First,
when the window is maximized, and second when the window is set to the
“normal” size.

• The middle part is the title of the program.

• The right part of the top bar contains either the close menu button,
see Figure 4.3b, or the open menu button, see Figure 4.3c, depending on
whether the menu is opened or closed. These buttons are here mainly to
enlarge the canvas so the drawing is better visible.

(a) Top left corner - Set-
ting long-term constants.

(b) Opened menu with the
close menu button in the
top left corner.

(c) Closed menu with the
open menu button in the
top left corner.

Figure 4.3: Parts of the top bar.
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4.3 Controlling part
Now we describe the controlling part. The controlling part is divided horizontally
into four blocks: the data, drawings, operations, and file work; see Figure 4.4.

Figure 4.4: Controlling part divided into four blocks.

4.3.1 Data
The data part contains a textbox on the left, where we can set the size of the
complete graph we would like to see. In Figure 4.4, we can see a drawing of K7.
The textbox is limited to accept only sizes of the already generated drawings. In
other words, we can write only numbers from 4 to 8 there. The default value is
four. On the right, there are two lines showing the number of crossings of our
drawing and the word YES if the current drawing contains exactly Z(n) crossings
and NO otherwise.

4.3.2 Drawings
The drawings part starts with the title, followed by the number of already dis-
played drawings of Kn. The next line consists of two buttons that generate the
previous and the next drawing. When there is no previous drawing, a message
box shows up. When there is no next drawing, the empty canvas appears so that
we can draw our own drawings on it.

4.3.3 Operations
The following part, titled operations, allows using various operations on the
drawings or on the empty canvas.

• The first line contains the face button, which serves to change a reference
face when the button is activated. We can click on any free place of the
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canvas and the face that contains the selected point becomes the reference
face. The default reference face is the outer one.

• The changing toggle button on the right of the face button is by default
set to the checked state. This means that when we want to display the next
or the previous drawing, the reference face is again set to the outer face.
When the toggle button is not checked, then every time we display the next
drawing, the face containing the point we selected last time is considered
to be the reference face. The main advantage of this toggle button is when
you have many similar consecutive drawings and you want to find out the
changes in the k-edges values.

• The invariant button, which is activated in Figure 4.4, is used to detect
the invariant edges with respect to some set of vertices on the canvas. We
can pick and unpick any vertex on the canvas. After picking it turns purple.
If the edge is invariant with respect to chosen (purple) vertices, it is dashed,
if it changes the k-value by one then it stays the same, and if it changes the
k-value by two it becomes dotted.

• The next line consists of three buttons. The first two are adding and
adding polyline buttons. The adding button creates a new vertex on
the canvas by clicking on any white place of the canvas. Also, when we
click on two already created vertices, it creates a line segment between
them. With the adding polyline button, we can create an edge consisting of
many consecutive line segments by clicking on some vertex, then by clicking
anywhere on the white canvas, and lastly by clicking on another vertex. The
edges are created by connecting the selected points by line segments. We
cannot add two edges between some pair of vertices, because we consider
only simple drawings. Therefore when this happens, a message box shows
up.

• The remaining button of the operations part is the remove button, which
serves for removing an edge, a vertex with all the edges incident to it, or
an intersection with its two incident edges, when the button is activated.

The common part is that only one of the adding, adding polyline, removing, and
invariant buttons can be chosen at one time. When you try to pick another one,
the one chosen before will be deactivated. Also, as you can see in Figure 4.4,
when any of the control buttons is activated it becomes red.

4.3.4 File work
The last part consists only of three buttons and eases the custom work.

• The first custom file toggle button can switch the states, if we want to
visualize drawings generated by the generator or if we want to visualize the
drawings created by ourselves and saved in a file. If the button is checked,
we work with the custom file. Otherwise, we visualize the generator’s data.
The default value is unchecked.
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• To the right of the custom file toggle button, there is the automatic mov-
ing button. When the button is activated, the visualizer starts to display
as many drawings per second as the frequency is set by automatic moving
constant. The redrawing takes some time on bigger graphs so the frequency
can become smaller.

• The save button serves only to save the current drawing into a file. After
changing the state to the custom one we can see our custom drawings in
the order of how we saved them.

4.4 The value part
The value part consists of eight horizontal blocks which contain values of k-edges,
invariant k-edges, and their cumulations; see Figure 4.5.

Figure 4.5: The value part consisting of eight horizontal blocks.

• The first four blocks are the same. They always contain the title (k-edges,
cumulated k-edges, double cumulated k-edges and triple cumu-
lated k-edges). Then there is a line with the values from Claims 2, 3, 4
and a line with the analogous values for k-edges.
The following values are the ones we have in the current drawing. The
colors of the numbers 0, 1, . . . , 8 correspond with the colors we used for the
k-edges on the canvas.
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• The fifth block titled triple cumulated theorem checks whether the
drawing on the canvas satisfies Conjecture 12 for a given k. There are also
blank characters − for values that exceed the threshold from Conjecture 12.

• The following two lines are the true values of the invariant cumulated
and double cumulated k-edges for the drawing on the canvas. The last
line shows the three terms from the equalities (2.3) and (2.2) modified for re-
moving an edge (which we selected after the invariant button was activated)
instead of a vertex v. The textbox in the right bottom corner contains the
number k (set to 1 by default) determining which k is considered in the
equalities (2.3) and (2.2). The textbox accepts only numbers between 0 to
8 as we only count the values of k-edges for k ∈ {0, . . . , 8}.

There are only nine columns in each of eight blocks of value part because we
thought it is enough to have that many k-values. Nevertheless, we can always
enlarge the controlling panel or make some moving windows to see more values.
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5. Conclusion
In this thesis, we surveyed the recent progress and the recent proofs of the Harary–
Hill conjecture for restricted classes of drawings of Kn. We used simple sequences
(Definition 2.2.3) to make the exposition simpler and more intuitive. We showed
that Mutzel and Oettershagen [1] used an incorrect argument in Lemma 8 to
extend the class of drawings for which the Harary–Hill conjecture is true.

We tried to generalize the proof by induction to prove the conjecture for a
richer class of drawings. However, we think that it cannot be generalized without
a deeper understanding of the inner structure of the drawings. The issue is
that when we use the equality (2.3) to estimate the left hand side by induction,
we estimate all three terms separately. However, the third term is determined
uniquely because we choose v to be incident to F . This means that we have a
degree of freedom only in two of these three terms on the right side.

Now, consider k =
⌊︂

n
2

⌋︂
−2 for n odd and a simple drawings D of Kn with Z(n)

crossings. We know that having Z(n) crossings implies that E3
≤k(D) =

(︂
k+4

4

)︂
by

Corollary 1.2 for n odd. On the other hand, we could choose v and F so that the
drawing D−v is not optimal after removing v. This is because Proposition 1 does
not hold when we want to apply the step from even n − 1 to n odd. Therefore,
there has to be some subdrawing D − v that is not optimal when cr(D) = Z(n).

This also means that the sum E3
≤k(D − v) + E3

≤k−1(D − v) is greater than
Z(n) due to Corollary 1.2 for n even. Therefore, either E3

≤k(D − v) >
(︂

k+3
4

)︂
or

E3
≤k−1(D − v) >

(︂
k+2

4

)︂
. Now, consider the case E3

≤k−1(D − v) >
(︂

k+2
4

)︂
. Then we

know, from the equality (2.3), where the term first term is exactly E3
≤k−1(D− v),

that the number E2
≤k(D, D− v) of invariant double cumulated edges is less than(︂

k+3
3

)︂
. In other words, we cannot use the induction in such a straightforward way.

We have tried removing all vertices from known odd optimal drawings shown in
Figures 1.2, 1.3, and 1.4. However, these types of drawings make only the first
term E3

≤k(D − v) in the sum E3
≤k(D − v) + E3

≤k−1(D − v) greater. Therefore,
we have not found an example with the second term larger yet, although we
think there should be some. We have been finding some new classes of optimal
drawings, but for all of them only the first term was greater than it should be.
We also know that both terms E3

≤k(D − v), E3
≤k−1(D − v) are the same for all

faces F ∈ F(D, v) because they result in common superface F (v).
We also think that Conjectures 12 and 13 hold, but we have not found any

good direction how to prove them.
Our program for generating simple drawings is still running, so we are still

extending our database of realizable fingerprints and our database of coordinates
for these realizable fingerprints. We also think that the visualizer helps in under-
standing of the structure of simple drawings. We are using it to count the number
of double and triple cumulated edges. Additionally, we verify Conjectures 12 and
13 and we think about generalization also for all simple drawings only up to iso-
morphism. If the reader wants to add some new features to our visualizer, do not
hesitate to write us an email and we will consider it.
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[11] M. Balko, M. Fulek, and J. Kynčl. Crossing numbers and combinatorial
characterization of monotone drawings of Kn. Discrete Comput. Geom.,
53(1):107–143, 2015.
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A. Attachments
In addition to the files mentioned below, every folder also contains files gener-
ated by the Visual studio and a file documentation.html and documentation
contained in a folder html. We do not include them in the list of attachments.
First, we recommend to read README.md in order to install everything what is
needed.

A.1 drawing of cliques
This is a folder containing files to check the fingerprints:

• drawing of cliques.cpp - main program running a parallel computation
for checking fingerprints,

• function.hpp - library containing all functions.

Then there is a folder containing fingerprints for different sizes of graphs.

• graph3.txt

• graph4.txt

• graph5.txt

• graph6.txt

• graph7.txt

A.1.1 Tests
A folder containing files for testing the half-edge structure and for working with
the fingerprints.

• pch.h and pch.cpp - header and main file for running tests

• test adding deleting edges.cpp

• test all special vertices.cpp

• test canonic fingerprint.cpp

• test graph properties.cpp

• test special vertex.cpp

• test vertices changes.cpp
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A.2 coordinates generator
A folder containing files for generating the realizable fingerprints.

• drawings of cliques.cpp - main program running a parallel computations
for generating realizable fingerprint,

• functions.hpp - library containing all functions except of triangulations,

• triangulation.hpp - library for triangulating polygons.

And also again folder data containing fingerprints for different sizes of graphs.

• graph3.txt

• graph4.txt

• graph5.txt

• graph6.txt

• graph7.txt

• graph8.txt

A.3 VisualizerWPF
A folder containing all files for the visualizer.

• App.xaml

• App.xaml.cs

• AssemblyInfo.cs

• CollisionDetection.cs

• CustomMath.cs

• Edge.cs

• EdgeListExtensions.cs

• ForceDirectedAlgorithm.cs

• GraphCoordinates.cs

• GraphGenerator.cs

• HashSetExtension.cs

• MainWindow.xaml

• MainWindow.xaml.cs
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• PointExtensions.cs

• Vertex.cs

Then the folder data containing coordinates for different sizes of graphs.

• graph3.txt

• graph4.txt

• graph5.txt

• graph6.txt

• graph7.txt

• savedGraphs.txt - file containing custom drawings

• savedGraphBackUp.txt - an auxiliary file for temporary storing of custom
drawings

A.4 ConjectureChecker
This folder contains the files for verifying Conjectures 12 and 13.

• App.xaml

• App.xaml.cs

• AssemblyInfo.cs

• CollisionDetection.cs

• ConjectureChecker.cs

• CustomMath.cs

• Edge.cs

• EdgeListExtensions.cs

• ForceDirectedAlgorithm.cs

• GraphCoordinates.cs

• GraphGenerator.cs

• HashSetExtension.cs

• PointExtensions.cs

• Vertex.cs

The folder data contains the coordinates for different sizes of graphs.
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• graph3.txt

• graph4.txt

• graph5.txt

• graph6.txt

• graph7.txt

• savedGraphs.txt - file containing custom drawings

• savedGraphBackUp.txt - an auxiliary file for temporary storing of custom

51


	Introduction
	Preliminaries
	History
	Our goals

	Recent progress on the Harary–Hill conjecture
	Preliminaries
	The 2-page and monotone drawings of Kn
	The structure of simple drawings
	Monotone drawings
	2-page drawings

	Shellable drawings of Kn
	Bishellable drawings of Kn
	Seq-shellable drawings
	Semi-pair-shellable drawings of Kn

	Generating simple drawings
	Checker of realizable drawings
	Creating rotation systems and fingerprints
	Checking realizability of fingerprints

	Generator of drawings
	Visualizer of drawings
	Force-directed algorithm
	Modes

	Applications

	User's guide
	Canvas
	Top bar
	Controlling part
	Data
	Drawings
	Operations
	File work

	The value part

	Conclusion
	Bibliography
	Attachments
	drawing_of_cliques
	Tests

	coordinates_generator
	VisualizerWPF
	ConjectureChecker


