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Introduction

The graph covering projection, in other words a graph homomorphism that is
locally isomorphic, appeared during the past four decades in various graph-
theoretic concepts as well as there were presented its application in com-
puter science, e.g. in distributed computing. In this thesis we would like
to exhibit further application of graph covering projections, namely in the
graph-theoretic model of the channel assignment problem. Like the applica-
tion of covers in distributed computing, results in the frequency assignment
field have high interest in computer and telecommunication industry.

We shall start with a brief history of graph cover and its applications.

We traced the first occurrence of the notion of graph covers to Conway [4]
who in early sixties used a special kind of a covering projection in the con-
struction of highly symmetric graphs in the proof that there are infinitely
many finite cubic 5-arc-transitive graphs. This approach was extended by
Djokovi¢ [11] to a construction of a infinite class of finite fourregular 7-arc-
transitive and by Gardiner [20] to the antipodal distance-regular graphs in
1974.

Nesettil and Pultr [53] showed in 1971 that every locally injective map-
ping G — G of a connected graph G is an isomorphism of G.

The structure of the set of all k-fold coverings of a given graph was char-
acterized in 1977 by Gross and Tucker [26] in terms of permutation voltage
assignments in a symmetric group of k elements. A simplier characterization
of all k-fold coverings was given by Bodlaender [7] in 1989, and the covering
projection of directed multigraphs was introduced here, too.

Embeddings of covering projections of graphs was considred in 1980 by
Clarke, Thomas and Waller [9].

In 1981, Biggs [5] used graph covers to prove that a k-regular graph on
2(k? — k + 2) vertices and girth 6 exists if and only if k or k — 2 is a perfect
square. In his later paper from 1983 [6] he showed that covering graphs
admit groups of automorphisms related to the group of the base graph
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In 1988, Negami [52] conjectured that the class of projective planar
graphs is equal to the class of graphs that have a finite planar cover. The
inclusion

{H is projective planar} C {H has a finite planar cover}

is trivial, but the opposite is difficult. The result could be possibly obtained
by the use of Robetson-Seymour theorem of forbidden minors, and only one
of 35 forbidden cases — namely the graph K 32 2 — resists to be shown that
it allows no planar cover (see [29] for the case of K44 — e minor). However
the conjecture is not proven yet, Hlinény and Thomas [30] in 1999 showed
that the conjecture can allow only upto 16 possible counterexamples (upto
obvious constructions).

Hofmeister [31] in 1991 counted isomorphism classes of k-fold covering
projections onto a fixed graph G.

Among recent results we shall mention the paper by Nedela and Skovi-
era [51] who in 2000 used graph covers to determine substantially small set
of groups s.t. their Cayley graph could be a snark, i.e. cubic and non 3-edge
colorable.

The graph covering projection became a standard construction in topo-
logic and algebraic graph theory, see monographs [4, 27, 49].

Graph covers play a specific role in the computer sicence. We review the
most intersting results here.

Angluin [2], Angluin and Gardiner [3] showed in early 80’s that classes
of graphs closed under taking covers can not be recognized by a distributed
computing environment with a finite fixed set of processor types. To prove
the complete characterization, they conjectured that two graphs have a finite
common cover if and only if they have the same degree refinement matrix,
which was proved by Leighton [44] in 1982.

Litovsky, Métivier and Zielonka showed in 1993 [45] that the families of
series parallel graphs and planar graphs cannot be recognized by means of
local computations. This result was extended by Courcelle and Métivier in
1994 [10], who showed that any minor-closed class distinct from the class
of all connected graphs which contains a graph with at least two cycles
cannot be closed under taking connected covers. In practice this means
that this class cannot be recognized by local computations, too — in the
sense of bounded relabelling schemes over a possibly infinite alphabet. Both
results generalize the model of Angluin and Gardiner, since they concern
only finite graphs. This negative characterization holds for example for the
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class of connected planar graphs, the class of connected partial k-trees with
k > 2, etc.

Bodlaender in 1989 proved that every cover G of a connected graph
H is a uniform emulation, that menas that a parallel algorithm designed
for the processor network G can be emulated on H where each node of H
corresponds to a constant number of nodes of G. The same paper provided
the complete characterization of covers of the ring, the grid, the cube, the
cube connected cycles, the tree and the complete graphs. Moreover it is
shown there that the decision problem whether a graph G covers a graph
H is at least as hard as the graph isomorphism problem, even if the ratio
V! /|Vi| is fixed.

In the concluding remarks Bodlaender asked the computational com-
plexity of the H-cover problem for fixed graph H. Abello, Fellows and
Stillwell [1] showed in 1991 that there are both polynomially solvable and
NP-complete cases. The series of paper by Kratochvil, Proskurowski and
Telle [39, 38, 37, 36] from late 90’s exhibits several approaches to establish
the most accurate boundary between the graphs for which the H-cover prob-
lem is polynomially solvable and the NP-complete instances for the H-cover
problem.

Kratochvil, Proskurowski and Telle showed that sufficiently connected
regular graphs belong to NP-complete instances for the H-cover problem.
Their proof requires the existence of a graph G which satisfies the following
property: For all its vertices u, the graph G allows an extension of a local
isomorphism on the neighborhood of u into a covering projection G — H.
The construction of this multicover G involves an algebraic method that
generalizes the building of common covers used by Angluin, Gardiner and
Leighton.

The multicover technique gave rise to the notion of the partial covering
projection. Its importance increased when it was used as a tool in the
proof of NP-completeness of the graph labeling problem with condition at
distance two [18]. Here we would like to introduce some recent aspects of
graph theoretic models of the channel assignment.

The concept of graph labelling satisfying constraints (2,1), that is fre-
quently considered in this thesis was introduced by Griggs and Yeh [25, 58].
This concept was motivated by the channel assignment problem, although
the telecommunication industry may in certain cases demand a more so-
phisticated model, see Leese’s survey [43] for more details. On the other
hand, Leese showed that in several other cases the general graph theoretic
setup for the channel assignment problem could be sufficiently accurate and
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results in fast nontrivial algorithms [42].

The graph labeling with condition at distance two, the so called L(2,1)-
labeling, resulted to an interesting graph structure and initiated both the
graph-theoretical and the computational research. The main aim in past
ten years is the specification of the maximum label A(G) that appears in an
optimal L(2, 1)-labeling of G, see papers by Chang and Kuo [8], Jonas [33],
Liu and Yeh [46], and by Sakai [55] on chordal graphs and by Whittlesey,
Georgess and Mauro [57] on cubes.

One can find several interesting approaches like the relation of the param-
eter A\(G) to another graph invariant: the path covering number [23, 22] by
Georges, Mauro and Whittlesey in 1994 or the question of which graphs al-
low only optimal labelings that use the full range of labels, see Fishburn and
Roberts [19]. The computational approach includes the NP-completeness
of the decision problem of whether a bipartite graph allows a consecutive
L(2,1)-labeling with at least six different labels [24], given by Giaro in 1997.

Labelings satisfying three constraints were studied by van den Heuvel,
Leese and Shepherd [56] and they provide several bounds for the span (i.e.
the size of the biggest label) for possibly infinite square and triangular grid
graphs as well as for paths.

In this thesis we will focus our attention on the relationship between
the partial covering projection and the computational complexity of the
corresponding decision problem on one side, and several models of channel
assignment on the other side. For this purpose, we shall comprehensively
inspect in detail the behavior of full and partial covering projections first.

The thesis is organized as follows: We introduce the notation and sev-
eral traditional theorems in the first chapter. The second chapter is devoted
to the structural properties of covers as well as to simple results on the
computational complexity of the H-cover problem which asks whether a
given graph G fully covers a fixed graph H. In the third chapter we ex-
plore computational complexity of the H-partial covering problem, and the
fourth chapter exhibits a relationship between partial covering projections
and models of the channel assignment problem.



Chapter 1

Definitions

In this chapter, we present the used notation and also provide some charac-
terization theorems which are well known through the graph theory. See the
monograph [50] for proofs of theorems and lemmas presented in this section.
The topic is also well covered by the book [47].

We use N for the set of natural numbers, and R, C resp. for the sets
of real, respectively complex numbers. If n € N, then [n] denotes the set
{1,2,...,n}.

For p being a prime, symbol Z, stands for the ring of residues modulo p.

An ordered pair of elements z,y is denoted by [z,y], while for an un-
ordered pair on elements z and y we use symbols (z,y) or (y,z).

If A, B are sets then A x B means the Cartesian product of A and B.
The product is formally defined as A x B = {[z,y] : © € A,y € B}.

A mapping or a function f from the set A to a set B is a subset of A X B,
such that for all z € A, there exists a unique y € B : [z,y] € f. We denote

the existence of a mapping by f : A — B or by A AN B and instead
[z,y] € f we write y = f(z) and say that y is the image of = over f.

Identity on the set A is a mapping i : A — A such that i(z) = z for all
x € A.

If f: A — B is a function, then the set A is called the domain of f,
while the set of all elements of B that are images of some elements from A
is called the range.

A mapping f : A — B is injective if, for each y € B, there is at most one
x € Ast. f(zr) =y. Similarly f is a surjective mapping if for each y € B
there is at least one = € A, f(z) = y. The inverse function f~': B — A of
an injective and surjective mapping f is defined by the equality f~!(y) = =
whenever y = f(z).
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When A’ C A, we define f(A') = {y € B: 3z € A",y = f(x)} and,
similarly, for B’ C B, we set f 1(B') = {z € A: f(x) € B'}.

The operation f o g is called the composition of mappings f : A — B
and g : B — C and is defined by the equality (f o g)(z) = g(f(z)).

A class C of mappings is closed under composition if, for each f,g € C,
Range(f) C Domain(g) :, the composition f o g belongs to C too.

1.1 Graphs

A graph or simple graph is a pair (V, E) where V is a set of vertices and
E C (‘2/) is a set of pairs which we call edges. For our purposes, we always
deal with finite graphs, which means that both V and E are finite sets.
Vertices are usually denoted by letters u and v and, if not otherwise stated we
number the vertex set of the cardinality n by V' = {v1,v9,...,v,}. Similarly,
m denotes the cardinality of the edge set and we write £ = {eq,...,en}.
If vertices v and v belong to an edge e = (u,v), we say that u and v are
adjacent and write u € e or u € (u,v), € 3 u, etc.

For graphs, we will use symbols G, G’, H, etc. To distinguish between
the vertex and edge sets of various graphs, we will use subscripts or brackets,
e.g. V(G),E(G), V.

The complement of a graph G = (V, E) is defined as the graph whose edge
set contains all pairs that do not form an edge in G. For the complement
of a graph G, we use the symbol G and formally define (V(G), E(G) =
V@), (") \ B(@)).

A directed graph or digraph is a pair (V, E), where V is a finite set of
vertices and E is a set of ordered pairs of V, i.e., oriented edges between
distinct vertices. For a directed graph, we use symbols é, D. If & = [u,v]
is an oriented edge, we say that € starts in the vertex u and ends in v and
that w is the tail or the ending vertex of € and v is the head or the beginning
vertex of €.

Only distinct vertices can be connected by an edge in the definition of
the graph. If we allow that the same vertex appears on both positions in the
pair, we call such an edge a loop. A (directed) graph which contains loops
is called a (directed) graph with loops.

A multigraph is a generalization of a finite graph where the edge set E is a
finite multiset formed from directed and undirected edges and loops (loops
can be directed too). Each edge (and loop) has assigned a finite natural
number, called the multiplicity of the edge m(e), which describes how many
times th edge e appears in F.
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If w is a vertex of G, then the set of vertices that are adjacent to the
vertex u is called the neighborhood of u and is denoted by N(u). The set
Nlu] = N(u) U {u} is called the closed neighborhood of w.

The degree of a vertex u in a simple graph G is the number of edges that
are incident with u. Formally, deg(u) = [{(u,v) : (u,v) € E(G)}]. If G is a
graph with loops, then each loop is counted twice in the degree of the vertex,
ie. deg(u) = [{(u,v) : (u,v) € E(G),u # v} +2|{(u,u) : (u,u) € E(G)}|.

For the maximal degree in a graph G, we use the symbol A(G).

In a multigraph the degree of a vertex u is the sum of the multiplicities
of the undirected edges incident with w, i.e.

deg(u) = Y m((u0)+2 Y m((uu))

(u,w)EE,u#v (u,u)EE

A vertex of degree 1 is called a leaf.

If all vertices of G have the same degree equal to a constant d, we say
that G is a d-regular graph. A 3-regular graph is also called a cubic graph.

If D is a directed (multi)graph, then the outdegree of a vertex u is the
number of edges that start in w and the indegree is the number of edges that
end in u, where both numbers are counted with the multiplicity:

outdeg(u) = Z m([u,v]) indeg(u) = Z m([v, u])

[u,v]€E [v,u]eE

The adjacency matriz Ag of a (directed, multi-) graph G is a square
matrix of order n = |V(G)|, where the entry (Ag)ij = ai; is equal to the
number of edges going from the vertex v; to v;. The matrix is symmetric for
undirected (multi-) graphs and 0,1 valued for simple graphs. If the graph
does not contain a loop, then all entries on the diagonal are equal to zero.

The symbol L(G) denotes the line graph of a simple graph G and is
defined as follows: V(L(G)) = E(G), E(L(G)) = {(e,¢') : e # €ene' # 0}.
The line graph shows whether a pair of edges of G shares a common vertex
or not.

1.1.1 Subgraphs, minors

A graph G’ is a subgraph of G if V(G') C V(G) and E(G') C E(G). If
E(G') = E(G)n (V(ZG’)), then G’ is an induced subgraph of G. We also say
that G’ is the induced subgraph of G spanned on the vertex set V(G').

Let G be a simple graph and e € E. After the removing of the edge e from
G, we get the graph (G —e) = (V(G), E(G) \ {e}). The contraction of the
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edge e = (u,v) results in a graph G-e with the vertex set V(G-e) = V(G)\{v}
and the edge set E(G -e) = E(G) \ {(v,w) : w € N(v)} U {(u,w) : w €
N() \ N(u)}.

A graph G is a minor of H if G can be obtained from a subgraph of H
by the contraction of some of its edges. If G is contracted from an induced
subgraph of H, we call it an induced minor of H.

A class C of graphs is called minor closed whenever G € C implies that
C contains all minors of G, as well.

1.1.2 Examples of graphs

The empty graph on n vertices E, has the vertex set V(E,) = {uy,...un}
and no edge, i.e. E(E,) = 0.

Vertices of an empty induced subgraph form the independent set. The
size of maximum independent set of G is called the independence number of
G and is denoted by a(G).

The path of length n — 1, is denoted by P,, has n vertices V(P,) =
{u1,..up} and n — 1 edges: E(P,) = {(u;,ui+1),1 < i < n}. We usually
say that P, starts in u; and ends in u,. A path in a graph G is an iso-
morphic image of some P,, i.e. a (not necessarily induced) subgraph that is
isomorphic to a P,,. A walk in G is a homomorphic image of a P,. A tour is
an image of an edge-injective homomorphism of some P,. In other words,
in a path, every edge and every vertex appears only once. In a tour, some
vertices may appear more times but every edge is used only once, i.e., a tour
may cross itself only in a vertex. Any edge or vertex may appear several
times inside a walk.

The cycle C,, is formed from P, and an edge joining vertices u; and uy.

The girth of G is the length of the shortest cycle contained in the graph
G as a subgraph.

If a graph has a cycle on all vertices, we call the cycle (and also the
graph) Hamiltonian.

The complete graph on n vertices K, has all possible edges, i.e., E(K,) =
{(ui,uj),Vi # j} or, equivalently, K,, = E,,.

An complete subgraph is called a clique. The clique of the maximum size
(measured in the number of vertices) is called the mazimum clique. The size
of a maximum clique of a graph G is called the clique number of G, and is
denoted by w(G).

The complete bipartite graph on partitions with a and b vertices K,y is
defined by V(K ) = {u1, ..., v1, .. 00}, E(Kap) = {(ui,vj)Vi=1,..,a,5 =
1,..,b}.
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A tree is a connected graph that contains no cycle as a subgraph.

The star graph with n rays is denoted by S,, and has n 4+ 1 vertices
V(E,) = {uo,...un} and n edges: E(S,) = {(uo,u;),1 < i < n}. We also
call ug the center of the star.

Suppose that, in the following definitions, (j1,..,7x) is a k-tuple of posi-
tive integers.

The flower (multi)graph F(j1, .., ji) contains one vertex of degree 2k that
is the unique intersection of &k cycles of length 71, .., ji. If j; = 1 for some ¢,
then this cycle forms a loop on the central vertex.

The banana (multi)graph B(j1,..,ji) has two vertices of degree k con-
nected by k paths of length ji, .., ji. If at least two parameters j;, j; are one,
then the central vertices are connected by the multiple edge.

The weight (multi)graph W (i, 3, k) consists of two cycles (loops) of length
j and k which are joined by a path of length .

Let k be greater or equal to three. The k-starfish graph has k vertices of
degree four forming a cycle of length £ and k vertices of degree two such that
each pair of consecutive vertices of degree four share one common neighbor
of degree two.

1.1.3 Graph drawing

We usually visualize a graph by a drawing of its vertices as distinct points
in the Euclidean plane, and edges as curves (i.e. homeomorphic images of
a closed real interval) that connect adjacent vertices. We say that G is a
planar graph if there exists a planar drawing of G, i.e., a drawing where
curves intersects only in their endpoints. The segments of the plane are
called faces, the infinite segment is the outerface.

An outerplanar graph has a planar drawing with a Hamiltonian cycle as
the boundary of the outerface.

A graph G is called a projective planar graph if there exists a cycle C as a
subgraph of G which can be contracted to the cycle (uy,ug, ..., Uk, v1, ..., Vg)
and G — {(u1,v1), (u2,v2), ..., (ug,vg)} has a planar drawing with C as the
outerface.

1.1.4 Connectivity

The graph G is connected if, for every pair of vertices u, v, there exists a
path in G which starts in 4 and ends in v.

If G is not connected, then its maximal connected subgraphs are called
components of connectivity.
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The length of the shortest path connecting vertices u and v from the
same component is called the distance, and is denoted by dist(u,v). Note
that any shortest path is always an induced path.

The greatest distance between a pair of vertices of a connected graph G
is called the diameter of G, and is indicated by diam(G).

The simple graph G is vertex k-connected if, for every pair of vertices
u, v, there exist at least k paths connecting v and v that are pairwise disjoint
on their inner vertices.

The simple graph G is edge k-connected if, for every pair of vertices u, v,
at least k edge disjoint paths join u to v.

The maximal vertex 2-connected induced subgraphs of G are called blocks
of G.

A set of vertices V' C V(G) is called the cutset of G if the subgraph
spanned on V(G) \ V(G') has more components than G.

A set of edges E' C E(G) is called the edge cutset of G if (V(G), E') has
more components than G.

The one-vertex cutset is called the articulation or the cutvertex, and the
edge-cutset of size one is called the bridge.

There are two well-known theorems that characterize the connectivity of
a graph in words of cutsets:

Theorem 1.1 (Ford-Fulkerson)
A connected simple graph G on n+ 2 vertices is k-vertez-connected if it has
no cutset of size at most k.

Theorem 1.2 (Menger)
A connected simple graph G on n + 1 vertices is k-edge-connected if it has
no edge cutset of size at most k.

1.1.5 Morphism on graphs, coloring, factors

A mapping f : V(G) — V(H) is called the graph homomorphism from the
graph G to the graph H if the existence of any edge (u,v) of G implies
that the pair (f(u), f(v)) is an edge of H. The digraph homomorphism is
defined in the same way, i.e., by considering the directed edges instead of
undirected.

With each (simple graph or digraph) homomorphism f : V(G) — V(H),
there is assigned a unique edge homomorphism fg : E(G) — E(H) defined
by fu((u,0)) = ((u), £(0).
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A homomorphism G — G is called an endomorphism. An injective
and surjective homomorphism is called an isomorphism. An isomorphism
G — G is an automorphism. The group of automorphisms of a graph G
with compositions is denoted by Aut(G).

An automorphism which maps each vertex onto itself is called the iden-
tity. The other automorphisms are called non-trivial. A rigid graph has no
automorphism except the identity.

The proper vertex coloring or, simply, the coloring of a graph G using
k colors, is any homomorphism G — Kj, i.e., a labeling of the vertex set
V(G) by numbers from [k], s.t. adjacent vertices get different labels. When
G allows a coloring with k-colors, we say that G is k-colorable. The minimum
k, s.t. G is k-colorable, is called the chromatic number of G, and is denoted
by x(G).

When the number £ is small, we prefer to use names of real colors like
black, white, red, etc., to denote the vertex label.

All vertices of a clique of a graph are colored by distinct colors under any
proper vertex coloring. Hence, the chromatic number of a graph is bounded
by the size of its largest clique: x(G) > w(G). A graph G is called the
perfect graph if, for each induced subgraph H C G, the chromatic number
of H is equal to the size of its largest clique.

The graph G is bipartite if x(G) < 2. In particular, every tree is a
bipartite graph. Bipartite graphs have a good characterization:

Theorem 1.3 The graph G is bipartite if an only if it doesn’t contain an
odd cycle as a subgraph.

The cyclic k-coloring is a homomorphism G — Cy.

The proper edge coloring of a graph G using k colors is a labeling of
edges of G with numbers from [k] s.t. edges which share a common vertex
get different labels. The minimum number of colors that are necessary for
the existence of an edge coloring of G is called the chromatic indezx, and we
indicate it by x/(G). Observe that the chromatic index of a graph is equal
to the chromatic number of its line graph: x'(G) = x(L(G)).

Theorem 1.4 (Vizing)
The chromatic index of any graph G is bounded by terms of its mazimum
degree A(G) < x'(G) < A(G) + 1.

A set of pairwise disjoint edges is called a matching. A matching that
contains all vertices of G is called a perfect matching.
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A perfect matching in a graph can be computed in polynomial time by
Edmond’s algorithm.

The factor of G is a subgraph of G on the same vertex set. A k-regular
factor we call the k-factor. Thus, the perfect matching is a synonym for the
1-factor.

We say that a graph G is k-factorable, if it can be split into a set of
k-factors with pairwise disjoint edge sets.

It follows that a 1-factorable graph is regular and its chromatic index is
equal to the degree of an arbitrary vertex.

The following application of the Konig-Hall marriage theorem shows
that all bipartite regular graphs are easily decomposable into a set of perfect
matchings.

Theorem 1.5 All bipartite reqular graphs are 1-factorable.

Moreover, the theorem implies that all bipartite graphs have the chro-
matic index equal to the maximal degree, and that an edge coloring using
A(G) colors can be found in polynomial time.

The following theorems show that any 2k-regular graph can be easily
decomposed into 2-factors or k-factors, as well.

Theorem 1.6 (Petersen)
Every 2k-regular graph is 2-factorable, and the k disjoint 2-factors can be
found in polynomial time.

Theorem 1.7 Each 2k-regular graph having an even number of edges in
each component can be split into two disjoint k-factors in polynomial time.

1.1.6 Covers, partial covers

Let us denote the maximum star in G with the vertex u as the center by
Sc(u), i.e., the subgraph of G on Nu] induced by the edges incident with
u.

If G and H are simple graphs, then a homomorphism f : G — H is called
a local isomorphism or a covering projection of H by G, if the mapping f
restricted to any Sg(u) is an isomorphism to Sy (f(u)).

If the mapping f in the above definition is not isomorphic but only
injective on S (f(u)), we call the homomorphism f the partial covering
projection.

If any (partial) covering projection G — H exists, we also say that G
(partially) covers H or that G is a (partial) cover of H.
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For the purpose of this thesis, we need a more precise definition of covers
and partial covers, since we will deal also with colored multigraphs.

Definition Let G and H be multigraphs where vertex and edge sets are split
into disjoint classes (colors) V(G) = Vg,U..UVg j, E(G) = Eg U..UEq,
E(G) = Eg,U..UEq, (and similarly for H).

A mapping f : (V(G) U E(G) U E(G)) — (V(H)U E(H) U E(H)) is
called the covering projection on multigraphs, if the following conditions are
satisfied:

1. YueVg,;: flu) € Vi,
2. V(u,v) € Eg,i: f((u,v)) € Eni A f((u,0)) = (f(u), f(v)),

3. V[u,v] € Eg,i: f([u,0]) € Epg A f([u,0]) = [f (u), f (v)],

4 V(u,0), (u,w) € B(G) A (u,0) # (u,w) = f((u,0)) 7 f((u,w)),
5. Vu, v, [u,w] € E(G) Alu,v] # [u,w] : f(fu,]) # f([u,w]),

6. Vv, ul, [w,u] € E(G) A fv,u] # [w,u] = f([v,u]) # f([w,u]),

7. Yu € V(G) : degg(u) = degm (f(u)),

8. Yu € V(Q) : outdege(u) = outdegp (f(u)), and

9. Yu € V(QG) :indege (u) = indegm (f (u)).

If f satisfies only the first sixz conditions, then it is called the partial covering
projection on multigraphs.

Note that the variables v and w in items 4,5, and 6 may refer to the
same vertex. In addition, one or both of them can be equal to v when w is
incident with a loop.

See Fig. 1.1 for an example of a covering projection G — H. Various
shapes of vertices and edges correspond to the different color classes. The
covering projection is indicated by numbers on vertices and edges.

1.2 Computational Complexity

In this section, we outline several basic definitions from complexity theory.
For a more detailed description, see the monograph [21].

In the thesis we will describe all algorithms as a sequence of steps written
in the natural language or we use algol-like structures. However, we suppose
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Figure 1.1: An example of a covering projection G — H

that our algorithm will be executed by a Turing machine with the program
embedded into the transition function.

An input instance is an object on which the computation is performed.
Size of an input instance is a number of symbols (or bits) written on the
input tape, that describes the input instance.

The running time is the number of steps needed for processing the al-
gorithm. It is expressed as a function of the size of the input instance.

For easier expression of the running time of an algorithm, we use the
O-notation. This helps us to concentrate to the most important factor that
affects the running time. We describe the running time function f as O(g)
if there exist constants ¢ and ng, such that Vn > ng : f(n) < cg(n).

For example, if the running time of an algorithm is bounded by a poly-
nomial of degree k, we write that it runs in time O(n*).

Objects we deal with are graphs and are represented by a list of vertices
and adjacent edges. For simplicity, we suppose that a constant space is
sufficient to describe the vertex and edge labels (or a logarithmic factor
appears both at the size of the input instance and also in the running time
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function). Typical input size parameters are the number of vertices n and
the number of edges m.

Our representation allows us to test adjacency of a pair of vertices in the
constant time O(1), process all vertices or neighbors of a fixed vertex in a
linear time O(n) and process all edges in O(m) time.

A problem is polynomially solvable if there exists a Turing machine which,
for any input instance written on the input tape, writes a correct output
instance (solution) and stops in the time which is bounded by a polynomial
in the size of the input instance. A Turing machine answers a decision
problem if it accepts or rejects the input.

The class of polynomially solvable problems is denoted by P.

There exists a wide range of graph-oriented problems that are polyno-
mially solvable, for example:

e Is GG planar?

e Is G bipartite?

Does G contain a perfect matching?

What is the size of a maximum matching?

Does G contain a Cy as an induced subgraph?
e What is the chromatic number of a perfect graph G?7

A problem R is polynomially reducible to a problem S if there exists
a Turing machine running in a polynomial time which converts any input
instance ¢z to an input instance ¢g and any output instance og to an output
instance or, such that the output instance op is a correct solution for ip if
and only if the solution og is correct for ig

If two problems are polynomially reducible to each other, we say that
they are polynomially equivalent.

For example, the searching for a k-factor can be reduced to the searching
for a perfect matching by the following reduction:

Theorem 1.8 Searching for a perfect matching and searching for a k-factors
are polynomially equivalent problems.

Proof: One reduction is trivial since every perfect matching is also a 1-
factor.

On the other direction, perform the following construction of the graph
G' in O(n + m) steps: Split each vertex u into d = deg(u) independent
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Figure 1.2: Reduction of k-factor to perfect matching

vertices uy,...,uq, S.t. each edge is incident with exactly one vertex u;.
Then add d — k extra new vertices and connect them to vertices uy, ..., ug4.
by the graph K,_j 4, where vertices u,,...,uq form one partition.

Every perfect matching in G’ uses exactly d—k edges inside each complete
subgraph Ky_j, 4. Therefore, exactly k& edges are connecting every Kg_j 4
with the rest of the graph G’, and the corresponding edges form a k-factor
in G.

The graph G’ contains a perfect matching if and only if the graph G has
a k-factor, since any k edges leaving Ky_j 4 can be completed to a perfect
matching inside K4 4. Hence, any matching of G’ that selects k vertices
in each Ky 4 can be extended to a perfect matching of the entire graph
G O

The class of problems which can be verified in polynomial time is denoted
by NP. Verified means that there exists a Turing machine that reads the
input instance and proof of the output instance and decides whether the
solution is correct to the input or not.

Class P is trivially a subclass of NPbut, at the moment, there is no proof
of whether these classes are equivalent or whether P is strictly smaller than
NP. Throughout the thesis we use the commonly accepted assumption that
P#NP. However, this implies the existence of a dense distribution of classes
in between P and NP [41].

Several problems are unknown to belong to NP, e.g. “What is the chro-
matic number of G7”, since there is no known polynomial verifier which, for
the output x(G) = k, proves that there is no coloring of G using at most
k — 1 colors.

The class of NP-complete problems (class NPc) is a subset of NP s.t.
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each problem from NP is polynomially reducible to an arbitrary problem
from NPc. The importance of NP-complete problems is derived from the
fact that the existence of a polynomial algorithm for a single NP-complete
problem proves the equality P=NP.

There are many famous graph related NP-complete problems, e.g.:

e Does a graph G contain a Hamiltonian cycle?
e Is a graph G k-colorable?
e Does there exist a homomorphism from G to C5?

In this thesis, we will often show a reduction to a H-coloring problem.

Problem: H-coloring
Input: A graph G
Question: Does there exists a homomorphism from G to H?

The computational complexity of the class of H-coloring problems was
fully characterized in [28].

Theorem 1.9 (Hell-Nesettil)
The H-coloring problem is NP-complete if and only if H contains an odd
cycle, and is polynomially solvable otherwise.

In particular, the classical k-coloring problem is equivalent to the H-
coloring problem when selecting H = K.

Another problem that is frequently used in this thesis asks for a specific
bicoloring of a given regular graph:

Problem: BW (k,j)

Input: A (k + j)-regular graph G

Question: Does there exists a coloring of V(G) with black and white colors
s.t. each vertex has adjacent exactly k vertices of the same color?

When k or [ is equal to zero, the problem is trivially satisfied, but all
other cases are NP-complete: The BW (2,1) problem was proven to be NP-
complete in [34, 35]. For the NP-completeness of the case of an even k > 2
and an arbitrary [ > 1, see [37]. The remaining case of an odd k can be
treated similarly [17].



Chapter 2

Covers

2.1 Structural behavior of covers
and partial covers

2.1.1 Introduction

We introduce two observations for the better description of the behavior of
a covering projection.

We already expressed that the covering projection f : G — H is a
homomorphism whose restriction to N[u| of an arbitrary vertex u € V(G)
is an isomorphism to N[f(u)].

We also defined the covering projection for multigraphs, which — rewrit-
ten to the case of simple graphs — satisfies the following conditions:

1. f is a homomorphism, i.e. Y(u,v) € E(G) : (f(u), f(v)) € E(H),

2. f is locally injective, i.e. Yu,v € V(G),dist(u,v) =2 : f(u) # f(v),
and

3. f is degree-preserving, i.e. Yu € V(G) : dege(u) = degm (f(u)).

It is easy to check that the local injectivity (no pair of edges can be
merged into a single edge) and degree preserving (the target doesn’t have
incident more edges than the source) are necessary and sufficient conditions
for the local isomorphism and, therefore, the above definitions are equivalent.

Observe that every isomorphism G — H is a covering projection.

The set of all covering projections is closed under a composition. In
other words, if f : G — H and g : H — F are covering projections, then
f og is a covering projection from G to F. More especially any covering

20
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projection f : G — H composed with a nontrivial automorphism of H is
another covering projection from the graph G to H.

In the literature, a covering projection f : G — H is sometimes men-
tioned with the adjective k-fold. This means that the number of vertices that
map onto a fixed vertex u is constant, i.e., there exists a positive integer k,
such that |f ! (u)| = k for all vertices u € V(H).

Observation 2.1 If the graph H is connected, every covering projection
into H is k-fold for some k.

Proof: Suppose that k is size of f~!(u) for a particular vertex u of H,
and that e = (u,v) is an arbitrary edge incident with u. Since the covering
projection f is a local isomorphism, it means that |f !(e)| = k, and the
constant is the same for both ends of e, i.e. |f~(u)| = |f~'(v)|.

Due to the connectedness of the graph H, we get the equality for all
vertices u € V(H). O

The observation immediately implies that whenever G covers a connected
graph H, then the size of the vertex set of G is a multiple of the number of
vertices in H. In particular, every covering projection G — G of a connected
graph G is an automorphisms of G.

For disconnected graphs, this multiplicity principle holds between pairs
of blocks of G and H, however, the constants may vary in different cases.

In the construction of graphs of special properties, we will use the fol-
lowing extension lemma:

Lemma 2.2 If a graph G is a partial cover of a graph H, then there exists
a graph G' D G that fully covers H.

Proof: Denote by g the partial covering projection G — H.

Enlarge the vertex set V(G) by introducing extra new vertices into the
set V(G') and extend the mapping g into V(G’) such that Vv,v" € V(H) :
97 )] = lg™ ()]

For each edge e = (v,v') of H, find sets A = g~ '(v),B = ¢ '(v') and,
if necessary, insert into G’ new edges, s.t. the sets A and B are connected
by a perfect matching. The mapping g is locally isomorphic. Hence, G’ is a
full cover of H. g

2.1.2 Degree refinement

Any full covering projection maintains the degree of a vertex. Therefore
only vertices of the same degree might be mapped onto the same target.
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Looking on the neighborhood of a vertex, we extend our observation that
also all neighbors of our candidates should be matched into pairs of the same
degree. In this section, we construct a partition of the vertex set into classes
in a way that generalizes this property of a full covering projection.

Definition The degree refinement of a graph G is a partition of the vertez
set V(G) into the minimum number of disjoint sets Ry, ..., Ry, such that:

e vertices in the same set have the same degree,

e if u and v belong to the same set then, for each R;, the number of
neighbors of u in R; is equal to the number of neighbors of v in R;.

Note that the degree refinement of a regular graph consists of only a
single set containing all vertices of the graph.

The degree refinement can be computed in O(n?) time by the following
procedure:

1. Split vertices into sets Rj, ..., R}, by their degree, and order sets in the
descending degree.

2. For each vertex, compute the degree vector whose i-th entry is the
number of neighbors in the set R}.

3. Stop if all vertices have the same degree vector in each set.

4. Otherwise refine the partition, s.t. sets contain vertices with the same
vector. Then refine the set order by the lexicographic ordering of the
corresponding vectors and continue with step 2.

The above algorithm gives us also the unique ordering of sets of the
degree refinement. The square matrix whose rows are degree vectors of the
final refinement is called the degree refinement matriz M.

Observe that the degree refinement matrix is filled by non-negative in-
tegers, and is weakly symmetric with respect to zero. If (M);; = 0, then
(M);ji = 0.

The following theorems glue together the shape of the degree refinement
matrix and the existence of a full covering projection.

Theorem 2.3 [2, /4]
If a graph G covers a connected graph H, then their degree refinement ma-
trices are equal.
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Theorem 2.4 [16, 17]
If connected graphs G and H have the same degree refinement matriz, then
any partial covering projection from G to H is also a full covering projection.

Proof: (Sketch) Perform the degree refinement procedure simultaneously
on graphs G and H, and sort the sets Rg; and Rp; lexicographically. Put
tz(u) = ¢ for each u € R;; where z stands for G or H respectively. Note
that vertices in the corresponding sets in G and H have the same degree
vectors during the execution of the degree refinement procedure.

Now, suppose that a partial covering projection f : G — H exists. We
show that, for any vertex u € V(G), tg(u) = tg(f(u)). Hence f is degree-
preserving, i.e., a full covering projection.

By way of contradiction suppose t¢(u) < ti(f(u)). Then the vertices u
and f(u) have the same degree and belong to the corresponding classes R’G’i
and Rj; ; of the initial degree distribution.

Suppose that the degree vectors of v and f(u) became different during
the k-th round of the degree refinement algorithm. This implies that, among
neighbors of u, there exists a vertex u', s.t. tg(u') < tg(f(u')) and u' gets
a different degree vector from f(u') earlier than the vertex u. We repeat
this argument for v’ to get u”, u"” etc. and, after at most k iterations, we
obtain a vertex u(!) satisfying u(!) € R ;, while fw®) e Ry andi <i,a
contradiction. ’

To exclude the opposite inequality, suppose that there exists a vertex
u satisfying tg(u) > tg(f(u)). Select a vertex v € Rg, arbitrarily, and
note that t¢(v) = tx(f(v)). Since the graph G is connected, there exists a
path from u to v and on the path there is a edge (v',u') such that tg(v') =
tu(f(v") but tg(u') > ty(f(u')). This yields the existence of a neighbor u”
of v, s.t. ta(u”) < tg(f(u”)), what is impossible. O

The last theorem implies the result of NeSetfil and Pultr [53] claiming
that every partial cover G — G of a connected graph G is its automorphism.

Call a graph ground if the degree refinement matrix is equal to its adja-
cency matrix.

Ground graphs have exactly one vertex in each class of degree refinement.
They may cover only itself, since there is no possibility to map two vertices on
the same target. On the other hand, it is easy to test whether an input graph
covers a ground graph, since any covering projection is uniquely identified
by the classes of degree refinement.

This approach was extended in [38], where an polynomial algorithm was
given which tested the existence of a full covering projection for simple
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graphs which have at most two vertices in each class of the degree refinement.
The algorithm used a reduction to the 2-SAT problem.

2.1.3 Marked products

Let G = (V, Eq, ..., Ex) be a k-regular k-edge-chromatic graph, where sets
Ey, ..., E; are color classes of an proper edge coloring. In this section, we
call this structure marked graph. For a given k, let the class My contains all
marked graphs, where the edge-coloring is represented by the color classes.

Note that each E; is a perfect matching in G, and that each ordering of
color classes represents a different object in M.

For two marked graphs G = (V, Ey, ..., E}),G' = (V', E{, ..., E},) € My,
we define the product G x G' = (V x V', Ey x E{, ..., E; x E}).

It is obvious that projections # : G x G’ — G and 7’ : G x G’ — G’
defined as 7((u,v)) = u,n'((u,v)) = v are covers, since they are locally
isomorphic. Each vertex of G x G’ has exactly k adjacent edges where each
of them belong to a different color class, and the same holds the graphs G
and G'.

The product G x G’ satisfies the categorical property with respect to
covers.

Lemma 2.5 Whenever there is a marked graph G that covers both G and
G', and both covering projections f, f' maintain the color classes, i.e., f(El) =
E; and f’(El) = E, then there exists an unique covering projection f: G —
G x G', such that f commutes with projections m, 7, i.e., f = fom and

fr=for.

Proof: The projection f is uniquely defined as f(u) = (f(uw), f'(u). It
follows directly from the definition of projections m, 7', that f commutes
with projection. We have to check that f is a covering projection. If an edge
(u,v) belongs to the class E;, then (f(u), f(v)) € F; and (f'(u), f'(v)) € E..
Therefore, (f(u), f(v)) € (E; x E!), and f is locally injective and respects
color classes. But both B and G x G are from M, and, hence, are k-regular
graphs, so f is a local isomorphism. O

We extend the class of marked k-regular graphs to the class M}, of all
k-edge chromatic graphs to deal with general graphs, as well. Elements of
M, are graphs together with the color classes G = (V, Ei, ..., E;). Now,
each color class F; is a matching in G.

For marked graphs G, G' € M}, let the product G x G’ and projections
7,7 be defined by the same formula as for k-regular marked graphs: G x
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G'=(V xV',E| x E{, ..., E;, x E}), 7((u,v)) = u, 7'((u,v)) = v.
We get a similar result as in the previous paragraph. The only difference
is that all projections we deal with in M) are partial covers.

Lemma 2.6 Suppose G,G',G € M., the graph G partially covers both G
and G' with respect to the color classes, and g,q’ are desired partial covering
projections. Then there exist a unique partial covering projection g : G —
Gx@G st.g=gomandg =gor'.

Proof: Set j(u) = (g(u), ¢ (u)). Then § commutes, and and edge (u,v) € Ej
has its mirrors both in E; and E!, and in (E; x E;) too. Thus, g is locally
injective, since all color classes are matchings. In other words, each color
class locally contains at most one edge and the product of corresponding
color classes has locally at most one edge, as well. O

One cannot expect that Lemma 2.6 will hold also for full covers of general
graphs and on the same vertex set V' x V', because whenever there are two
vertices u € G,u’ € G’ of different degree, then the vertex (u,u’) has the
same degree as w and v/, which is impossible. But if more structure is
achieved, a particular component of G x G’ covers fully both G and G’.

Call a graph G = (V4,...,V}, En, ..., Ex) well marked with respect to de-
gree refinement V7, ...,V if E; are classes of edge coloring and each E; is a
perfect matching either inside one class Vj or between two classes Vi and
Vku.

Definition Let G = (V4,..., V|, E1, ..., E;),G' = (V],..., V], EY{, ..., E}.) be two
well marked graphs with the same degree refinement, let classes V; and V]
correspond to each other in the refinement, and let E; acts on partitions
in G with the same indices as E} in G'. Then, we define G ® G' = (V1 x
Vi,...,VixV/,Ei x EY, ..., E, x E}) as a product of well-marked graphs G
and G'.

Theorem 2.7 If G,G' are well marked graphs and G fully covers both G
and G' by g and g' with respect to the edge color classes, then there is a
unique full covering projection G — G ® G', satisfying g =gom,g' = gon'.

Proof: It follows from the definition of well marked graphs, that if u,v € V;
and v’ € V/, then the neighborhoods of u, v, and u' are mutually isomorphic
with respect to the color classes. Therefore, each of them is also isomorphic
to the neighborhood of (u,u') in G ® G, because all edges are achieved:
If (u,v) is an edge between V; and Vi and belongs to Ej, then an edge
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(w,z) € E} connects a vertex (say z) from V; with a vertex from Vj;. Then
((u,2), (v,w)) is edge of G ® G', and belongs to the color class E; x EJ.
Hence, § commutes, and «w, 7’ are full covers, too. It is necessary to
check that g is a full covering projection. Due to Lemma 2.6, the mapping
g is a partial covering projection. Moreover, g maintains the degree of every
vertex. Hence, ¢ is a full covering projection. O

It follows directly from the definition that all well marked graphs have
a symmetric matrix of degree refinement.

2.1.4 Common covers

Angluin in 1980 explored in her paper [2] the power of distributed computing
in a network of processors and defined the class DAA as the class of sets of
graphs that might be recognized by a deterministic distributed computation
with a uniform initial and final configuration.

She defined the universal cover U(G) of a simple graph G as an possibly
infinite tree with vertex set consisting of all walks started in a fixed vertex
vp that do not traverse the same edge in two consecutive steps. Two walks
w,w’ are adjacent if w' is a one edge extension of w or vice versa.

The universal cover U(G) is an infinite structure whenever G has a cycle.
For an easier and practical recognition of graphs, she proved that U(G) =
U(H) if and only if G nd H have the same degree refinement matrix.

In the same paper, she proved that the classes Cq¢ = {H : U(H) =
U(G)} belong to DAA. In other words, for each G there exists a finite
set of processor types that, when it is assigned to vertices of any H, it
computes whether H has the same degree refinement as G or not. From a
practical point of view, it may be implemented as a hardware test whether a
certain network of processors is feasible for the processing of an distributed
algorithm that assigns to the processors at vertices from the same class of
degree refinement the same task.

It is proved there that two graphs G, G’ are indistinguishable by DDA
computations if there exists a finite graph H called the finite common cover
that covers both G and G'.

To establish the full characterization of whether two graphs are recog-
nized by a DA A computation, she conjectured that G and H have the same
degree refinement matrix if and only if G and H have a finite common cover.

This conjecture is closely connected to the categorical product of two
marked k-regular graphs G x G, since we already proved that this product
is also a common cover.
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Unfortunately, the structure of several k-regular graphs G cannot be
extended to a marked graph, since these graphs are not k-edge colorable.
For example, the Petersen graph is cubic, but its chromatic index is equal
to four.

The following technique was used to prove the Angluin’s conjecture for
a restricted class of graphs in [3].

Observe the graph G = G x Ky, called the Kronecker double cover [2] of
G. Since G is k-regular, and K5 is bipartite, G is bipartite k-regular, and
due to Theorem 1.5, it is k-edge colorable. It follows that G can be marked.
In addition, G fully covers G by the canonical projection m((u,v)) = w.

Corollary 2.8 For each k-reqular graphs G,G' there exists a graph G that
fully covers each of them.

Proof: If G is not k-edge chromatic, use G instead of G and produce G x G".
Then G x G’ covers G that covers G. Similarly for G'. O

For a general graph G, there is a question of whether there exists a
graph G that can be well-marked and that fully covers G. The question is
positively answered for graphs whose degree refinement matrix is symmetric.
The graph G=0GxKyis regular and bipartite inside each V, x Ks. The
bipartite graphs between Vi, and Vi» are regular due to the symmetry of
the degree refinement matrix. This property remains after multiplication by
K.

The conjecture was proven by Leighton two years later in 1982 [44]:

Theorem 2.9 Let G,G’ be two finite connected simple graphs. Then the
following statements are equivalent:

e G and G' share a common finite cover;

e GG and G' have the same universal cover;

e G and G' share a common (possibly infinite) cover; and
e G and G' have the same degree refinement matriz.

Proof: (Sketch) Denote by G;; the subgraph of G induced by edges con-
necting sets R; and R;. Suppose that for all ¢, j, we are able to construct
graphs H;; that cover G;; as well as G;-j. By the induction hypothesis, sup-
pose that we are able to construct a common cover of graphs H; that covers
both (G\ E(Gij)) and (G'\ E(GY;)) for some (M);; # 0. Then, we use multi-
ple copies of H;; and Hy; until sets R;(H;;) and R;(Hz;) have the same size.
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, (p,r,1)
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¢=2b=3 (,7,3)

Figure 2.1: Detail of Leighton’s construction

(Immediately, the equality holds also for sets R;.) Gluing together vertices
u € R;(H;j) and v € R;(Hz;) that have the same image in G and G (and in
the same way, for index j), we get a common cover of both G and G'.

Now we show a construction of graphs H;;. Due to Corollary 2.8, we
suppose that i # j. For each vertex u € V(G ), fix an injective labeling of
its incident edges by numbers from [deg(u)]. We use the symbol ¢(u, e) for
the label of edge e incident to vertex u. We perform the same procedure for
the graph G7;.

Let a = (M)Z'j,b = (M)ji, and put
V(Hy) = (V(Ri(G) x V(Ri(G") x [a]) U (V (R; (@) x V(R (G) x [):

Two vertices (u,u’, k) and (v,v',1) are adjacent if and only if

(Ua (ua U)) - Cl(ula (Ula vl)) (mOd a)a and
= C(’U, (Ua ’U)) - CI(Ula (ula vl)) (mOd b)

Projections f : (u,u', k) = w and f': (u,u', k) — ' are covering projec-
tions, which prove that H;; is a common cover of both G and G. O

See Fig. 2.1 for an example of the product of two vertices and their
adjacent edges.

Call the graph constructed by the above theorem Leighton cover.

Theorem 2.9 directly implies the following corollary [2]:

Corollary 2.10 If graphs G and G' cover the same connected graph F, then
they have a finite common cover.

2.1.5 Colored directed multigraphs

Lemma 2.11 Any tree T fully covers only an isomorphic tree.
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Proof: If the covering projection maps two vertices u and «’ of T on the
same vertex in H, then the path joining v and v’ is mapped onto a cycle in
H. Going around this cycle in H, we get a sequence of vertices in T', which
form a cycle or an infinite path. Both cases are impossible since T is a finite
tree.

We proved that the covering projection is injective. Any tree is also con-
nected graph, and there exists only 1-fold cover. Hence, it is an isomorphism
by Observation 2.1. O

If a general graph contains a cutvertex whose removal gives a tree as a
one block, then the mirror of that cutvertex has the same property under
any covering projection, and the trees are isomorphic. If more trees appear
by the removal of the vertex, then they should be arranged into isomorphic
pairs.

This observation gives us an idea of how to concentrate our attention
only to graphs without leaves: If there is a leaf in the graph, remove it and
maintain a code that the leaf was removed together with the code of the
leaf. This gives us a graph without leaves, where some vertices are labeled.
For simplicity, we will view different labels as different vertex colors.

At the second step, we remove all vertices of degree two from the graph:
Consider a path connecting two vertices of degree at least three, whose all
internal vertices have degree two. We replace the path by a single edge
and maintain the code of the number, order and colors of vertices of the
replaced path. Due to a similar reason, we call the code of the path the
edge color. Since the removed path is not necessarily symmetric, we assign
an orientation to the edge. Note, that we can uniquely reconstruct the
original path from the color and the orientation of the edge.

It is possible, that the path replacement create a multigraph with loops
and multiple edges.

Now, we are able to represent each graph by a directed (edge and ver-
tex) colored multigraph with minimum degree 3, and with the following
property: If there exists a full covering projection between two directed col-
ored multigraphs (due to the definition the covering projection maintains
edge direction and both edge and vertex colors), then there exists also a full
covering projection between the transformed multigraphs [37].

In the paragraph 2.1.2, we constructed a degree refinement and the ma-
trix of degree refinement as a tool, that allows us to partially determine the
image of a vertex under a covering projection between simple graphs. A
similar procedure can be performed for a colored directed multigraph G:

First fix an ordering of all edge and vertex colors — this is necessary
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for the unique definition of the degree refinement matrix. Suppose that the
undirected edges are colored by 1, .., p, while directed edges by 1/, ...,¢ .

_ Denote by ci(u) the degree vector having the following structure:

d(u) = (¢y(u), degi (u), .., degy (u), indy (), outdyr (u), ..., indy (u), outdy (u)),
where ¢, (u) is the vertex color of u, deg;(u) is the number of edges of color 4
incident to u, and the symbols ind; (u) and outd; (u) have a similar meaning
— the number of oriented edges of color ¢’ incident to wu.

The first step of the degree refinement procedure consists of splitting
V(G) into sets R}, such that vertices in the same set have the same degree
vector. Sort sets by the lexicographical order of their representatives.

Then refine the partition, as shown in paragraph 2.1.2 until all vertices
from the same set have the same number in neighbors in each set R;.

Note that having the degree partition, we can distinguish between edges
of the same color, that connects different pairs of blocks. Therefore, we
may assume that without lost of generality, the edge colors used inside a
single block or colors of edges that connect a pair of blocks are unique, and
that they are not used elsewhere in the multigraph G. For this purpose, we
introduce extra new colors to distinguish these edge sets.

Using the same argument, we separate oriented edges leaving a block
from the incoming edges. Hence, we assume that the oriented edges appear
only inside blocks of the degree refinement.

2.2 Computational complexity of
the H-COVER problem

The computational point of view states a question of whether for given
graphs G and H there exists a (partial) covering projection from G to H. If
both graphs are part of the input, then the problem is trivially NP-complete.
By selecting H = K4 we can test the existence of a proper 4-coloring of a
cubic graph G, such that on the closed neighborhood of every vertex, all
four colors are used [35].

We use a similar approach, as is used for the testing the existence of a
graph homomorphism (i.e., the H-coloring problem) and define a class of
H-cover problems, where each problem corresponds to a specific graph H:

Problem: H -cover

Input: A graph G

Question: Does there exists a covering projection mapping the graph G onto
the graph H?
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The same technique is used for partial covers:

Problem: H-partial cover
Input: A graph G
Question: Does there exists a partial covering projection from G to H?

Without lost of generality, we suppose that the input graph G is con-
nected, since each block of connectivity of G have to (partially) cover the
graph H, if and only if the entire graph G covers H.

2.2.1 Complexity of covering sparse graphs

Both H-cover and H-partial cover problems are polynomially solvable for
trees, even if H became a part of the input. Then, the H-cover problem is
equivalent to the tree-isomorphism problem. If the tree H is fixed, then the
tree isomorphism testing is solvable in constant time.

The H-partial cover problem is solvable in constant time too, because
we can ask whether an input graph G is a subtree of H. If H is fixed, then
it has only finitely many subtrees, and we can try each case separately. On
the other hand, quite sophisticated algorithms running in polynomial time
exist for testing subtree isomorphism, see [21], problem GT48 or [54].

In addition, both problems are solvable in polynomial time for graphs H
that have only one cycle. If a connected graph G covers unicyclic H, then
the graph G has exactly one cycle, and its length is multiple of girth(H).
We denote the multiplicity by k&, and build an connected k-fold cover of H.
Since H has one cycle, this k-fold cover Hy is uniquely determined. Finally,
the test, whether two unicyclic graphs are isomorphic, can by done by a
slight modification of the tree isomorphism algorithm:

1. Compare |V(G)| and A(G) with |V (Hy)| and A(Hy). If there are
different numbers, the graphs cannot be isomorphic.

2. Add into G two disjoint copies of the graph Sxn(g)41- Now, G has
three components. Denote these two stars by S and S’

3. Select an edge ¢ = (u,u’) € E(G) that lies on the cycle and remove
it from G. Unify u with the centre of S, and u' with the centre of S’.
Denote the resulting tree by Tg.

4. Perform steps 2 and 3 on the graph Hy, and test for the tree isomor-
phism between T and Ty, . If the test succeeds, claim that G' and Hj,
are isomorphic.
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5. If the test fails, repeat step 4 at most girth(H) times, and each time
select one of the girth(H) consecutive edges along the cycle in Hy. If
all these tests fail, then G is not isomorphic to Hy.

To check that the algorithm is correct, observe the following facts.

e Since v and v/ have maximal degree, they must be mapped onto the
corresponding vertices in Hy, and after the reconstruction of the orig-
inal graph they will be connected by an edge on both sides.

e We have checked all possible non-isomorphic splitting of the graph Hy,
into a tree, and if G was isomorphic to Hy, at least one of these trees
was isomorphic to T¢.

The H-partial cover problem for unicyclic graphs can be solved by a
similar procedure. There are only two differences:

1. If G contains a cycle, we prepare a k-fold cover H as above, otherwise
we select k, such that girth(Hy) > diam(G).

2. Test for the subtree isomorphism, instead of the tree isomorphism.

Note that both methods use the (sub)tree-isomorphism routines in the
way, that graphs T and Ty, form the input instance.

Corollary 2.12 The H-cover and H -partial cover problems are solvable in
polynomial time for every graph H with at most one cycle in each component
of connectivity.

We will see in the following section that two cycles in H may cause that
the H-cover problem become NP-complete.

2.2.2 Results review

We already claimed in Theorem 2.3 that, if any covering projection G —
H exist, then G and H share the same degree refinement matrix. The
computation of the degree refinement matrix can be done in polynomial
time, hence we get the following corollary.

Corollary 2.13 The H-cover problem is solvable in polynomial time for
ground graphs H.
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The fact, that the adjacency and degree refinement matrices are equal,
is equivalent to the formulation, that every block of degree refinement of H
contains only one vertex.

The H-cover problem first appeared in [3], and even in this pioneer
paper, examples of both polynomially solvable and NP-complete instances
were shown.

The last corollary was extended by Kratochvil, Proskurowski and Telle
[39] for graphs with more complicated cycle structure than unicyclic graphs.
We first mention the case of simple graphs.

Theorem 2.14 If all sets of the degree partition of a simple graph H have
at most two vertices, then the H-cover problem is solvable in polynomial
time.

Proof: (Sketch) Let G be the input graph. Ask, whether G has the same
degree refinement matrix, and continue, only if the question is answered
positively.

If any covering projection f : G — H exists, then all vertices of G, that
corresponds to one-vertex sets in H, have uniquely determined image under
f. Therefore, the “hard” task is to define the mapping f on vertices that
corresponds to the two vertex-sets B;(H) = {a;,b;}.

For each vertex u € B;(G), introduce a boolean variable x,, which will
be assigned the truth value, when « is mapped onto «a;, and z,, is set to false,
whenever f(u) = b;.

We construct a 2-SAT formula @, such that each its satisfying assignment

corresponds to a proper covering G I H.

e If two distinct vertices w and v belongs to the same block B;(G) and
if they are adjacent or have a common neighbor, then let ® contains
(Ty V xy) A (0T V —2,) as a subformula.

e If (a;,a;), (bi,b;) are the only edges between B;(H) and B;j(H), then
let @ include conjunction (z, V —z,) A (m2y V ) as a subformula, for
all pairs of vertices u € B;(G),v € Bj(G).

e If (a;,b;), (bi,a;) are the only edges that connects B;(H) and B;(H),
then let ® contains (z,Vxy)A (-2, V-zy), for allu € B;(G),v € B;(G).

These three types of clauses in ® force, that whenever a satisfying as-
signment for ® exists, then the corresponding covering projection is locally
injective. In the other direction, every covering projection f : G — H can
be transformed to a satisfying assignment of ®.
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We proved that for all graphs H, which blocks of degree partition have
at most two vertices, the H-cover problem is polynomially reducible to the
2-SAT problem, which is known to be polynomially solvable. O

Note, that trees or unicyclic graphs may have more than two vertices in
a block of degree partition and, therefore, none of the above theorems give
a complete characterization of the polynomially solvable cases.

The paper [39] includes the complete catalogue of H-cover instances of
all simple graphs H with at most six vertices, where 36 cases of 208 are NP-
complete, and a non-trivial polynomial reduction is shown for about 100
graphs.

In the sequel paper [37], Kratochvil et al. introduced the colored directed
multigraphs as a structure, that exclude vertices of degree at most two, and
they gave a complete characterization for cdm-graphs with at most two
vertices.

The proof technique of Theorem 2.14 was extended in [36] to the case of
colored directed multigraphs as follows:

Proposition 2.15 The H-cover is a polynomially solvable problem if H is a
colored directed multigraph, whose classes of degree refinement (with respect
to vertex and edge color) have 1, 2 or j vertices, and further two conditions
are satisfied:

e Each block of degree refinement restricted to the edges of the same color
is one the following type:
— a disjoint union of (directed) loops or (directed) multiple edges,
— the graph depicted in Fig. 2.2 or two disjoint copies of this graph,
— the cycle CYy,

— C4 whose all edges are replaced by a multiple directed edges, all
in the same direction and with the same multiplicity,

— Cy whose all edges are replaced by a directed Cs.
e Moreover, the edges of the same color, that join a pair of distinct
blocks, induce a undirected subgraph of one of the following type:
— a disjoint union of multiple edges,
— Ky 1 or a disjoint union of two Ks 1,

— Ky or a disjoint union of two Ks 3.
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O =0

Figure 2.2: One of the polynomially solvable block types

Recall, that vertices forming a block of degree refinement have the same
degree, indegree and outdegree with respect to an arbitrary edge color. If a
block is a disjoint union of more components (the fist and the second case),
then the degree is the same, for all vertices from the block of the degree
refinement.

As a particular result, the proposition states that the following cases are
polynomially solvable problems:

e The F(j1,.., ji)-cover, where F' denotes the flower graph,
e the banana B(j1, .., ji)-cover,
e the 4-starfish-cover.

Now, we focus our attention to the NP-complete instances of the H-cover
problem. In [39], Kratochvil, Proskurowski and Telle proved that:

e The W(1,3,3)-cover problem is NP-complete.

e The H-cover problem is NP-complete for all k-starfish graphs, for odd
k greater to three.

The crucial role of the weight graph W (1,1, 1), in the characterization
of NP-complete cases, was explored in [37]:

Theorem 2.16 Let H be a colored directed multigraph on two vertices. The
H -cover problem is NP-complete, if and only if H has only one block of
degree refinement, and there exists a color class E;, such that H|g, contains
W(1,1,1) as a subgraph or its directed clone with indegree and outdegree
greater or equal to three.

See Fig. 2.3, for the three smallest NP-complete cases.

2.2.3 Covers of regular graphs

In this section, we consider a regular graph H, as the underlying graph
for the H-cover problem. Its matrix of the degree refinement has only one
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Figure 2.3: The three smallest NP-complete cases

element, that is equal to the degree of an arbitrary vertex. The methods,
that were used to prove the existence of a polynomial-time algorithm for the
H-cover problem, were based on a fine distribution of vertices into classes
of the degree distribution. No algorithm has been constructed yet for the
polynomial testing of the existence of a H-cover, when the graph H has at
least two cycles and contains a block of degree refinement with at least 5
vertices. Therefore, it was generally expected that for all k-regular graphs
with k£ > 3 the H-cover problem is NP-complete.

Here we prove this conjecture.

The result of Abello et al. [1] stated, that there are many graphs H,
such that the H-cover problem is NP-complete, even if the construction
was based on highly symmetric graphs, i.e., graphs with a rich group of
automorphisms.

The question was open for the class of rigid graphs [1], and was solved
positively by using the following “multicover” approach [38].

Definition A graph G is called o multicover of H, if for any pair of ver-
tices u € V(G) and v € V(H), every isomorphism Sg(u) — Sp(v) can be
extended to a covering projection G — H.

The multicover always exists for all regular graph H, and can be obtained
by a Cayley-like construction, even if it requires exponentially large number
of vertices with respect to the size of H.

We need one more definition for the proof of the NP-completeness of
covering problem for k-regular graphs.

Definition A graph H is solid [16] (or good [38]), if for any vertex u €
V(H), the graph H,, that arises by the splitting the vertex u of degree d
into leaves uq,..,uq, tnvolves only partial covers H, — H, that became au-
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tomorphisms of H after unifying all vertices u; into the original vertexr u.

The multicover and solid graphs were used in a construction of an gadget
for a polynomial reduction from the hypergraph colorability.

Theorem 2.17 [38] The H-cover problem is NP-complete for solid graphs.

In addition two large classes of graphs were shown to be solid.

Theorem 2.18 [38] All k-edge colorable k-regular graphs and all |'k—J2“2'|—
edge-connected k-reqular graphs are solid.

The characterization is tight in the sense that in [16] there was given an
example of a (%]—edge—connected k-regular graph, that is not solid.
We finish the classification by extending the result of Theorems 2.17 and

2.18 into the class of all regular graphs.

Theorem 2.19 [14] The H-cover problem is NP-complete for all k-regqular
graphs H of k > 3.

Proof: Without loss of generality, we assume that H is connected, and that
H is not a solid graph. In particular, we assume that H is not bipartite,
since bipartite k-regular graphs are k-edge colorable (cf. Theorem 1.5) and
are solid.

The Kronecker double cover H = H x K> is k-edge colorable k-regular
connected graph, and the H-cover problem is NP-complete, due to Theorems
2.17 and 2.18.

We show a reduction of the H-cover problem to the H-cover problem.
Consider a graph G, whose covering projection G — H is questioned. We
claim that G covers H, if and only if G is bipartite, and G covers H.

The only if statement is trivial, since H is bipartite, and only bipartite
graphs can cover a bipartite graph (this holds even for a general graph ho-
momorphism). Moreover, any covering projection G — H can be extended
to H by a composition with a covering projection H — H.

In the other direction, assume that f : G — H is a covering projection,
that G is bipartite, and that its proper bicoloring using black and white
is given. For each vertex u of H, denote by u; and u,, its two copies in
ux Ky C H x Ky = H. We define a mapping f : G — H by

~ ty if f(v) = u and v is white,
up  if f(v) = w and v is black.
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Since each vertex has all neighbors colored by the complementary color,

the above mentioned mapping satisfies all properties of a covering projection.
O

As a consequence of Corollary 2.12 and Theorem 2.19, we get that the
computational complexity of the class of all regular graphs is fully classified.

2.2.4 Covers of cyclic graphs

In the last section, we show the complexity characterization for the k-
starfish-cover problems.

We have already mentioned in Proposition 2.15 that the k-starfish-cover
problem is polynomially solvable for k£ € {1,2,4}, even if the first two in-
stances are multigraphs and do not correspond to a simple k-starfish graph.

Here we prove that for all other k&, the problem is NP-complete.

Consider a k-starfish graph. By the method described in the para-
graph 2.1.5, it can be transferred into a colored multigraph, which consists
of two cycles glued together. Each of those cycles has a different color, for
simplicity, call them red and green. By the same technique we rebuild the
input graph into a colored multigraph, whose edges are colored by the same
color set. Call the modification of the k-starfish graph Hj. For the future
use, we denote the vertex set of V(Hy) = {v1,..,v;}

Observe that each vertex of Hy has adjacent exactly two red and exactly
two green edges, and the same assumption holds for any graph that covers
Hy.

Definition Suppose that a connected graph G has its edges colored by red
and green, and that each color class induces a set of disjoint cycles and
isolated vertices. We define the k-filling graph G as k copies of G connected
by extra new edges, such that:

o All k copies of the same vertex of degree two are connected by a cycle
Ck.

o The newly introduced edges connect the i-th copy of a vertex to its
(i + 1)-th copy (counted modulo k).

o The new cycles are colored, such that every vertex is incident with two
red and two green edges.
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Figure 2.4: The k-filling of a graph G

Observation 2.20 The k-filling graph G fully covers the graph Hy, if and
only if G partially covers Hy,.

Proof: Since G C G then one implication is trivial.

Let [u,i] be the i-th copy of the vertex u. If g is a partial covering
projection G — Hy, then we define f : G — H as f([u,d]) = vgyy if
g(u) = v,, where the addition is done modulo k. Then the mapping f
is a full covering projection. O

Lemma 2.21 If the k-starfish-cover problem is NPcomplete, then the (ck)-
starfish-cover problem is also NP-complete, for any positive integer c.

Proof: Let G be the input graph for the Hy-cover problem. If ¢ = 1, then
there is nothing to do, otherwise subdivide every edge by ¢ — 1 extra new
vertices and call the new graph G’. Then G’ partially covers H,, if and
only if G covers Hj. Use G' as the input graph for the (ck)-starfish-cover
problem, and note, that G' covers H,, if and only if G covers Hj. O

Lemma 2.22 The k-starfish-cover problem is NP-complete for all odd k.

Proof: Let G be an input graph for the Cj-color problem. We show a poly-
nomial time reduction from the Cj-coloring problem, that is NP-complete
for all odd & due to to Theorem 1.9.

Replace each vertex u of degree d by a red cycle of length dk. Denote by
Uy, ..., uqr the vertices of the cycle corresponding to the vertex u. Note, that
u; and u; are mapped onto the same vertex under any (partial) covering
into Hy.
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For each edge incident to u, select a distinct representative among ver-
tices Up, Uk, ..., Ugp- If u; and u; are representatives of the edge e = (u,u’) €
E(G), then connect u; and ug by an extra new green cycle C}, such that wu;
and u; are adjacent. Perform the last step for all edges of G, and call the
new colored graph G’.

It is clear that under any partial covering g : G’ — H}, each set u;, 1 <
i < deg(u) are mapped onto the same vertex. We define the homomorphism
¢: G — Cf by c(u) = g(ug), where Cy, is the cycle of Hj spanned by the
green edges. Moreover, if (u,u') € E(G), then there are vertices u;,u},
such that (g(u;),g(u})) is a green edge of Hy, and (c(u),c(u’)) € Ck. The
application of the “filling” Observation 2.20 finishes the first implication of
the polynomial reduction from the Cy-coloring problem.

In the other direction, if a Cy-coloring of G is given, we embed Cj as
the green cycle into Hi. Define a mapping on vertices wu;; as the color of u,
and find its extension onto vertices of degree two lying on the red and green
cycles. Due to Observation 2.20 it is always possible extend the partial cover
g : G' — Hj, into a full covering projection f : G' — Hy. O

For the complete the characterization of the computational complexity
of the k-starfish cover problem, we need results for k& being at least third
power of 2.

Lemma 2.23 [13] The 8-starfish-cover problem is NP-complete.

Proof: We will reduce the traditional fourcolorability problem. Let G be a
graph whose coloring using at most four colors is questioned. Replace each
vertex u of degree d by an extra red cycle Cg, and select d representatives
of incident edges as described in Lemma 2.22.

For every edge (u,u’) and its representatives u; and u;, use the gadget
consisting of two green Cg and one red Cig depicted in Fig. 2.5. Call the
new graph G'.

Without lost of generality suppose, that the vertex u; is mapped onto
v; under a partial covering g : G’ — Hg. Then a and b are mapped either
on v;41 or v7, and it forces that u; maps either on vy 9, vj14 or v . All
representatives of the original vertices are mapped onto v; with the same
parity of the index [. Assume that even indices are exposed. Then, we can
use vertices vo, v4, vg, and vg as indicators for the four distinct colors. We
define coloring of G as ¢(u) = g(u;). The construction of the edge gadget
ensures that adjacent vertices get different colors, and all pairs of distinct
colors might be used on the coloring of any edge of G.
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Figure 2.5: The edge gadget for the 8-starfish-cover problem (solid edges are
red, dotted are green)

Finally use Observation 2.20 to create the graph G' and ask for a full
covering projections instead of a partial covering projection of G’. O

Let us summarize the complexity results for the k-starfish problem.

Corollary 2.24 The k-starfish problem is solvable in polynomial time, if
and only if k € {1,2,4}. The problem is NP-complete in all other cases.



Chapter 3

The H-partial cover problem

We have defined the partial covering projection as a locally injective graph
homomorphism. In the previous chapter, we have also showed several com-
plexity results for the H-cover problem, which asks for a more restricted —
locally isomorphic homomorphism.

Recall, that the computational complexity of the graph homomorphism
(H-coloring) problem was fully characterized by Hell and Neset#il theorem
(see Theorem 1.9).

We would like to establish the closest relation of the complexity char-
acterization of H-partial cover problems to the complexity classes of the
H-cover problem and the H-coloring problem, respectively.

Any full covering projection can be viewed as a partial covering projec-
tion. Conversely, Theorem 2.4 implies that whenever G and H have the
same degree refinement matrix, then every partial covering projection is lo-
cally isomorphic, i.e., a full covering projection. Hence, the following result
follows:

Theorem 3.1 [17] Let H be a connected graph. If the H-cover problem is
NP-complete, then the H -partial cover problem is NP-complete, as well.

Proof: Let G be a graph, for which the existence of a full covering projection
to H is questioned. Compute the degree refinement matrices Mg and M.
If these matrices are different, reject the input, since due to Theorem 2.3
it is a necessary condition for the existence of a full covering projection. If
Mg = My, then ask for a partial covering projection f : G — H. When f
exists, then due to Theorem 2.4 the mapping f is a full covering projection,
too. When no partial covering projection is found, then obviously no full
covering projection exists. O

42
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Observe that the above theorem and Theorem 2.17 prove the existence
of bipartite graphs, such that the H-partial cover is NP-complete.

Due to Theorem 3.1, we focus our attention to graphs H, whose H-cover
problem is solvable in polynomial time, since there is still a possibility that
the corresponding H-partial cover problem is NP-complete. In particular,
due to Proposition 2.15, we will consider the classes of flower, banana and
weight graphs, and we show that there are large subclasses of polynomially
solvable problems, as well as NP-complete instances.

Recall Corollary 2.12, which states that the H-partial cover problem is
polynomially solvable for graphs with at most one cycle in each component
of connectivity.

3.1 Proof techniques

In the complexity discussion we will use three different techniques that help
us to determine the computational complexity of a particular H-partial cover
problem.

These methods use various approaches from the graph optimization prob-
lems, and some of these results might be interesting on their own. We devote
the forthcoming section to them.

3.1.1 Subset of halfedges

In several cases the question of the existence of a partial covering projection
can be solved by the finding of a feasible mapping on the neighborhood of
vertices of higher degree. The halfedge object, that is defined below, helps
us to find a mapping on a vertex and its adjacent edges.

Definition A multiset of halfedges E%(G) of a graph G consists of all or-
dered pairs of vertices and edges that are mutually incident.

More formally, E%(G) ={[u,e€],[v,e] € V(G) x E(G),e = [u,v]}.

Observe that the element [u, e] appears at least twice in E%, when e is
a multiple edge or a loop incident with the vertex w.

We introduce two lemmas which shows that it is possible to fing a specific
subset of halfedges using the matching algorithm.

First we describe the case of an unoriented graph.

Lemma 3.2 Let G be a graph where every vertex u € V(G) has assigned
a nonempty interval I, = [ay,by] C [0,degg(u)], and where every edge e of
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G has given a subset J, C {0,1,2}. The question of whether there exists a
subset of halfedges S C E%(G) satisfying

Vu € V(G) : {[u,e] € S:e€ E(G)}| €1,
Ve € E(G) : {[u,e] € S:u e V(GQ)}| € J.
is solvable in polynomial time.

Proof: Subdivide each edge e of G, such that J, # {0,2}, by an extra new
vertex ue, and put I,, = J.. It is clear that the set S exists in G, if and only
if the new graph G’ contains a factor F, s.t. degr(u) € I, for all vertices
ueV(G).

The above factor problem can be solved by a matching procedure [48],
(Exercise 10.2.2). For the self-consistence we sketch the proof. Use a similar
construction as in the proof of Theorem 1.8. For each vertex u € V(G'):

1. Split its incident edges into deg(u) independent vertices forming the
set Ay,

2. connect the set A, by a complete bipartite graph to a newly introduced
set B, of deg(u) — a, independent vertices, and

3. insert an extra set C),, on b, — a, vertices and join it by a complete
bipartite graph to the set B,,.

Finally form a clique on the set U,cy(g)Cu, and, if the total number of
vertices in the new graph is odd, add an extra new vertex to the clique. Call
the new graph G”.

Suppose, that a perfect matching in G” exists. The construction of the
tripartite gadget forces that each A, is incident to at most b, and at least
a, edges of the matching. The same edges incident to the vertex u form the
wanted factor in the original graph G .

In the opposite direction, any factor of G’ can be easily transformed to
a perfect matching of G O

The statement and the proof of the directed case is similar. Now, we
can more precisely specify constraints for both endvertices of an edge.

Lemma 3.3 Let D be an orientation of a multigraph G, and for every vertez
u an interval I, = [ay,by] C [0,degq(u)] is given. Moreover, let each edge
& = [u,v] € E(D) has assigned a set of pairs Jy C ({0,1} x {0,1}). The
question whether there exists a subset of halfedges S C E%(G) satisfying

Vu € V(G) : |[u,e] € S:e € E(Q))| € 1,
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Je = {[0.1]) Je = {0,1],[1, 1]}
DT S TR MEETOS Rt TR

Je = {[0,11,10,0]} Je = 110,11,10,00, [1, 1}
DT R (O TR M TR TICTI

Figure 3.1: The four replacement cases

Vé = [u,v] € E(D) : [|[u,e] € S|, |[v,¢] € S]] € J&
18 solvable in polynomial time.

Proof: We describe a replacement procedure, that should be performed on
all edges of the graph G. If the set Jz contains none or both of unsymmetric
pairs [0,1] and [1,0], then the orientation of e is not decisive and we can
modify e as showed in Lemma 3.2.

We show a replacement procedure for an edge that contains exactly one
unsymmetric pair in Jz. W.lLo.g. suppose, that [0,1] € Jz. There are four
possible cases for the set Jz, and the corresponding replacement gadgets of
€ = [u, v] together with the definition of the intervals I for extra new vertices
are depicted in Fig. 3.1.

Perform the replacement for all edges € of D and obtain the graph G'.
Then, a factor F' in G’ satisfying the degree constraints I, exists, if and only
if D has a proper subset of halfedges S. 0

3.1.2 Edge precoloring extension

The edge coloring theory is one of the most developed part of the graph
theory. We shall mention the Vizing theorem (see Theorem 1.4) and Holyer’s
result on the NP-completeness of the existence of a edge 3-coloring [32].

Kratochvil and Seb6 showed in [40] that the precoloring extension is NP-
complete for the class of perfect graphs, when at least three distinct colors
are used in the precoloring, or when the graph is precolored by two distinct
colors and each of these two colors is used on at least two vertices.

The line graphs of bipartite graphs form a subclass of the class of perfect
graphs, (see Theorem 1.5) and we prove that the hardness result of the
precoloring extension holds also for this reduced class of graphs.
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Figure 3.2: The variable gadget V'

Theorem 3.4 [15] The question, whether there exists a proper edge 3-
coloring of a bipartite graph extending a given precoloring is a NP-complete
problem.

Proof: We show a reduction from the Not-All-Equal 3-SAT [21], problem
LO3.

Let ® be a formula in the normal form, and let each clause has three (not
necessarily distinct) literals. We construct a graph G and define a coloring
f on a subset of E(G), s.t. f allows an extension to the entire graph G, if
and only if ® has an satisfying assignment, s.t. each clause contains a false
valued literal.

We denote the three colors used in the edge-coloring of G by r,¢g and b
and call them red, green and blue.

Assume that every variable in ® has at most k positive and at most k
negative occurrences. For each variable z, put into G an extra copy V7 of
the graph depicted in Fig. 3.2.

For each clause z = (L A L5 A L§) of the formula ®, put into G an extra
copy of the graph C? depicted in Fig. 3.3. We finish the construction of the
graph G by series of unifications:

For every variable = and each literal L] equal to z, unify the correspond-
ing vertex [ with an unique pj that is not used by other literals. For each
L? = =z unify [7 with an unique njx.,.

The graph G is bipartite. The classes of bipartition are indicated by
white and black vertex color.

Define the precoloring f on the dotted edges of GG, as depicted in Figures
3.2 and 3.3.
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Figure 3.4: Coloring of the clause gadget C

Consider a proper edge coloring g of the graph G, that extends f. On
every copy V7, the edges e, .., e, and €, .., e} are colored red or green, and
gler) = glea) = ... = g(ex) # g(€}) = ... = g(e})-

For each variable z, we assign x the true value if g(e]) = r, and the false
value otherwise.

We show that under the above assignment, each clause contains both
positively and negatively valued literals. For a contradiction assume, that a
clause z has all three literals positively valued. In the corresponding graph
C?, all three edges connecting vertices [{, [5 and [5 to the variable graphs are
colored red. The coloring cannot be extended to the entire graph C#, since
edges c and ¢’ should be colored by the same color. This coloring cannot be
extended to the right part of the clause gadget, a contradiction. The same
argument proves the impossibility of the occurrence of three negative valued
literals in C*.

In the opposite direction, consider a proper assignment of variables of
the formula ®. For each variable z, color the edge ef red, if the variable x
has assigned the true value, and color it green otherwise. Then each gadget
V7 has an unique extension of the above coloring. Moreover, each clause
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gadget is connected to the rest of the graph by three edges, such that at
least one is red and at least one is green. Fig. 3.4 shows that the coloring
can be extended to the entire edge gadget C?. The four remaining cases are
obtained due to the symmetry of the graph and by the exchange of red and
green color. 0

Corollary 3.5 The edge precoloring extension problem is NP-complete for
the class of cubic bipartite graphs.

Proof: Use two copies of the graph G constructed in the previous proof,
and merge each pair of the corresponding edges ending in a vertex of degree
one into a single edge. In addition, join every pair of the corresponding
vertices of degree two by an extra new edge. The new graph G’ is cubic,
and the formula ® has a solution, if and only if both copies allow an edge
precoloring extension. On the other hand, when a coloring of a single copy
of G is given, it can be extended to the entire graph G'. g

3.2 Results

We have already pointed that graphs whose (full) covering problem can be
solved in polynomial time can bring a nontrivial characterization for the
corresponding H-partial cover problem. In this section, we consider the
flower F(aq,...,ax), banana B(aq,...,a;) and weight W(a,b,c) graphs with
various parameters.

Lemma 3.6 Let H be a graph, and t be a positive integer. Denote by H*' the
graph that arise from H by subdividing each edge by t — 1 extra new vertices.
Then the H-partial cover and H''-partial cover problems are polynomially
equivalent.

Proof: If f is a partial covering projection G — H, it is easy to extend f
into a partial covering projection G** — H*.

In the opposite direction, let G be the graph, whose partial covering
projection to H'! is questioned. Without lost of generality, we assume that
G is connected, otherwise we can test each component of G separately.

Suppose G = C. The length of an arbitrary cycle in H is divisible by ¢,
hence, G can cover H*, if and only if & is divisible by ¢, and C, Jt covers H.

Now consider G # Cy. Call a path mazimal subpath of G, if all its inner
vertices are of degree two in G, and its endpoints have degree different from
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two. In G, replace every maximal subpath of length k& by a path of length
[k/t]. Call the new graph G'.

Every pair of vertices of H* of degree different from two are at distance
that is a multiple of £. Then the same property holds for vertices of degree
at least three in G, or G' cannot cover H**. Hence, any maximal subpath
of length k in G’ between vertices of degree at least three corresponds to a
path of length k¢ in G. A similar argument shows that any maximal path
of G' of length k, that ends with a leaf, corresponds to q maximal subpath
of length at most kt in G.

Then, G partially covers H'!, if and only if G’ covers H, and every pair
of vertices of G that are of degree at least three, has distance divisible by a.
O

Corollary 3.7 The W (ta, tb, tc)-partial cover problem is polynomially equiv-
alent to the W (a,b, ¢)-partial cover problem. Similarly, the F(tay,...,tay)-
partial cover, and the B(tay,...,tay)-partial cover problem are polynomially
equivalent to the F(ay,...,ax)-partial cover and to the B(aq, ..., ar)-partial
cover, respectively.

3.2.1 Two distinct parameters

We first consider the situation, when at most two distinct parameters a, b
appear in the specification of flower, banana and weight graphs. Instead of
F(a,a,..,a,b,...,b), we write F(a’,b’), where i and j denote the multiplicity
of the parameters a and b, respectively. For simplicity, we drop the zero
exponent term in our notation, i.e., F(a’) = F(a*,b°) = F(b°,a*). The same
notation we use for banana graphs.

Due to Corollary 3.7, we suppose through this section that a and b are
relatively prime.

Theorem 3.8 The F(a',V)-partial covering problem is solvable in polyno-
mial time for all a and b and every 1, j.

Proof: Let G be the graph whose partial covering to F = F(a’,¥’) is
questioned. In the proof, the order of parameters a,b does not matter, and
we assume without lost of generality that ¢ > 1.

Assume that G is connected, otherwise we perform the following com-
putation separately on each component of G. If G is a cycle, then it covers
F' if and only if its length is a nonnegative linear combination of ¢ and b
(when i,5 > 1) or a multiple of a (when j7 = 0). This question can be easily
tested in constant time.
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Now, assume G is not a cycle, and denote v the central vertex of F.
By the local injectivity, every vertex of G of degree at least three must be
mapped onto v under any partial covering projection. It remains to decide
where vertices of degree at most two of G will be mapped. Consider a
maximal subpath of length |/ in G with both endpoints of degree at least
three. We decide whether none, one or both terminal edges of the path
can be mapped into a cycle of length a in F'. This decision can be done
in fixed time, since for [ > ab all three cases are possible. Denote the set
of all possible cases by J(I), more formally, put 0 € J(I), if the equation
[ = pa + gb allows a nonnegative integer solution with ¢ > 2, let 1 € J(I),
when p,q > 1, and finally 2 € J(I), if p > 2.

In G, replace each maximal subpath of length [ by a single edge e, and
put J. = {0,1,2}, when e ends in a vertex of degree one, and put J, = J(I)
otherwise. Call the new graph G’.

Assign I, = [max(deg(u) —2j,0), min(deg(u), 21)] to every vertex u of G’
and ask whether a proper subset of halfedges S for G’ exists, with respect
to the sets I, and .J,. Due to Lemma 3.2 the question can be tested in
polynomial time. If the result is negative, then G cannot partially cover
F(a', b)), since the existence of the set S is necessary.

Suppose that the set of halfe(liges S exists. There is a natural correspon-
dence of the set of halfedges E>(G’) and the set E(G'?). Denote G', the
bipartite subgraph of E(G’*?) restricted to the halfedges of S. The upper
bound of each interval I, shows that A(G)) < 2i. Hence, edges of G/, can
be properly colored by at most 27 colors in polynomial time. We use these
2i colors to distinguish between 27 starting segments of cycles of length a in
the graph F(a’,V/).

Repeat the above coloring procedure also for the set S = E 3 (G"\ S, and
get a similar coloring of halfedges that will be mapped in cycles of length b.
Now the coloring uses at most 25 colors, different from the 2¢ colors reserved
for a-cycles.

Let us summarize what we have computed so far. We have constructed a
graph G’ and colored its halfedges by at most 2(i+ ) colors that correspond
to 2(1+7) halfedges incident with the central vertex v. Now, in the graph G,
partially cover every maximal subpath wyg, .., 4; joining two vertices of degree
at least three into F', such that both endvertices uy and u; are mapped onto
the central vertex v, and vertices uq,u;_; are mapped into the cycles of F,
that are used as colors on halfedges (ug, (uo,w;)) and (w, (ug,u;)). Similarly,
find a partial covering of the other maximal subpaths of G, but remember
that only the path ends of degree at least three needs to be mapped onto
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the central vertex. O

In contrary to the previous theorem, the banana graphs with two distinct
parameters allows both polynomially solvable and NP-complete instances.

Theorem 3.9 The B(a’,b)-partial covering problem is solvable in polyno-
mial time, if a and b are both odd, or i or j are equal to zero.

Proof: Note that due to Corollary 3.7 the B(a')-partial covering problem
is equal to the B(1)-partial covering problem, that is equal to the edge
coloring of bipartite graphs, and can be solved in polynomial time (see The-
orem 1.5).

The proof is based on a similar argument like proof of Theorem 3.8. We
expose the differences from the previous proof.

Now, assume %, j > 1, and since the proof is independent on the relative
size of a and b, we also assume 7 > 2.

Let G be the input graph for the B-partial covering problem, and as
above, we assume that G is connected. If G is a cycle, its length [ is a
nonnegative linear combination ap + bg with p + g even and ¢ = 0 when
j =0, and with ¢ < p when j = 1 respectively. This test can be performed
in fixed time.

Denote by v and w the two vertices of B = B(a’,b’) that have degree at
least three. Observe that the graph B is bipartite, and that the vertices v
and w belong to the different classes of the bi-partition.

The graph G is bipartite and any pair vertices of degree at least three
maps onto the same target (v or w), whenever they belong to the same class
of bi-partition, or no partial covering projection exists. We fix one of the
two possible mappings on vertices of degree at least three and denote it by
f-

Create the graph G’, and compute sets J(I). When j = 1 then only linear
combinations with parameters p — 1 > ¢ are allowed. Assign sets J, and
I, = [max(deg(u) — 7,0), min(deg(u),7)], and ask for a subset of halfedges
S. As above the existence of S is the necessary and sufficient condition for
the existence of a partial covering projection f : G — B.

Consider the graph G/ induced by halfedges from S and determine a
proper edge coloring using at most i colors. This is always possible since G/,
is bipartite and A(G!) < i. This coloring helps us to extend the mapping
f onto beginning segments of maximal subpaths G that maps onto a-paths
of B. Finally perform the same procedure for the complement of S, and
extend f onto the entire graph G. O
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Theorem 3.10 The B(a’,b’)-partial covering problem is NP-complete when-
ever |a — b| is odd, and i,5 > 1.

Proof: For i > 2 we show a reduction from the BW (i, j) problem, and we
reduce the BW (34,4) problem in the case 1 = 1.

Assume a is odd, b is even, and both parameters are relatively prime.
We discuss the case 4,7 > 2 first. Let G be the ¢ + j-regular graph whose
black and white coloring is questioned. We replace each edge of G by a path
of length [ = ab.

We claim that the new graph G’ partially covers B = B(a,b’), if and
only if a proper BW (i, j)-coloring of G exists. Consider a partial covering
projection f : G’ — B. All original vertices are mapped onto v or w, the
vertices of degree at least three in B. Color a vertex u € V(G) black, if
f(u) = v and color it white otherwise. There are only two ways how to
express | = ab as nonnegative linear combination ap+ bq: either p =b,q =0
or p = 0,q = a. Thus a maximal subpath, that is covered only onto b-
paths of B, has ends mapped onto distinct vertices of B, whereas both ends
are mapped onto the same target, if a a-pattern is used. Due to the local
injectivity of the partial covering projection and the fact that every vertex
of G has degree i + j, exactly 7 neighbors of any vertex of degree at least
three are mapped into an a-path, and exactly j neighbors are mapped into
a b-path of B. Obviously, the black and white coloring derived from the
partial covering is a proper BW (i, j) coloring.

For the opposite direction, consider any BW (i, ) coloring of the graph
G. The subgraph of G spanned by the edges connecting vertices with the
same color is i-regular and we denote it by Gs. The graph G2 is bipartite
with maximum degree i, and due to Theorem 1.5 its proper edge-coloring
using ¢ colors always exists. This edge coloring determines the mapping from
G’ into a-paths of B as follows: ¢ different colors represent 7 different a-paths
of B. Since the beginning segments on any maximal subpath connecting
vertices with the same color should be mapped onto different a-paths, such
mapping always exists (remember that b is even, j > 2).

Similarly, subgraph of G’, spanned by the edges interconnecting sets of
white and black vertices, is bipartite and j-regular, and can be colored using
j colors. These edge colors represent different b-paths of B, and for every
edge color ¢, we use a partial covering pattern, that starts and ends inside
the c-th b-path to cover all maximal subpaths, that correspond to c-colored
edges of G'.

The mapping defined above is locally injective on the neighborhood of
every vertex of G’, hence, it is a partial covering projection G’ — B.
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Now, consider the B(a’,b) and B(a,b’)-partial covering problems. We
show a reduction to the BW (i, 1) problem. The base idea and several ar-
guments are inherited from the previous case. Let G be the (i + 1)-regular
graph whose black and white coloring is questioned. Replace every edge of
G by a path of length [ where

e | =ab+ (a—1)a for the reduction to the B(a’,b)-partial covering
problem,

e [=ab+ (b—1)b for the B(a,b’)-partial cover.

Suppose, that the new graph G’ = G* partially covers B(a’,b). There
are only two possibilities to cover a path of length [ = ap + bg with both
ends mapped onto vertices v and w, namely, p = a + b — 1,¢ = 0 and
p =a—1,q = a. The corresponding patterns are ] = a+a + --- + a and
Il=b+a+b+a+---+0b, and in the first case both ends of the path are
mapped onto the same target, while at the second case, one end is mapped
on v and the other onto w. Note, that it is impossible to use two b-paths
consecutively, since it violates the local injectivity around vertices v or w.
As in the above case, the existence of a partial covering gives us a proper
BW (i, 1) coloring. When a BW (i,1) exists, it is possible to find a partial
covering by the (half)edge coloring argument.

Finally consider a partial covering projection G’ — B(a,b'). The equa-
tion | = ap + bq allows only the following solutions: p =0,g =a+b—1 and
p = b,q = b—1 that corresponds to partial covering of a maximal subpath of
length [, namely by patterns [ =b+b+---+bandl =a+b+a+b+---+a.
The only difference from the previous case is that the covering pattern that
starts with a b-path corresponds to an edge connecting two vertices with
the same color (observe that the number of summands is even), while the
pattern with the a-path corresponds to a edge in G that connects white and
black vertex. The already presented edge coloring argument shows that a
partial covering projection G’ — B(a, b’) exists, whenever a proper BW (i, 1)
coloring is given. O

Combining together Theorems 3.9 and 3.10 and Corollary 3.7 we get the
following complete classification:

Corollary 3.11 The B(a’,b’)-partial covering problem. is polynomially solv-
able if a and b are divisible by the same power of two, and is NP-complete
otherwise

Now, we focus our attention to the third class of “simple” graphs, namely
to the class of weight graphs. Recall, that due to Theorems 2.16, 3.1 and
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Corollary 3.7 the W (a, a, a)-partial cover problem is NP-complete. Surpris-
ingly there are parameters a and b that the weight partial covering problem
allows a tractable — polynomial time algorithm.

Theorem 3.12 The W (a, b, b)-partial covering problem is polynomially solv-
able, when the parameter a is odd, and b is even.

Proof: Observe that the graph W = W(a,b,b) is bipartite, hence, only
bipartite graphs G can partially cover W, and classes of bi-partition of G
determine the mapping f on vertices of degree three, as in the proof of
Theorem 3.9. Denote by v,w the two vertices of degree three in W, and
color a vertex u € V(G) of degree three black, if f(u) = v, and color it white
when f(u) = w. Thus, the “hard” problem is to determine the mapping on
vertices of degree at most two, and it can be solved by a simple procedure:
For each maximal subpath of length [ connecting two vertices of the same
color, determine whether [ = ap + bq allows a nonnegative solution with p
even and ¢ > p/2—1. Any maximal subpath connecting vertices of different
colors can cover W, when [ = p, or if | = ap + bq has a solution satisfying
g>(p—1)/2—1 and p is odd and greater or equal to three.

The local injectivity on vertices of degree three — namely the decision
which initial segments will be mapped onto a-paths — can be tested by the
halfedge coloring procedure described in the proof of Theorem 3.9. O

Theorem 3.13 The W (a, b, b)-partial covering problem is NP-complete, if
the parameter b is odd.

Proof: We show a reduction from the BW(2,1) problem. Let G be a cubic
graph whose black and white vertex coloring is questioned.

Replace each edge of G by a path of length [ = ab + (b — 1)b to obtain
the graph G’ = G*! and suppose that a partial covering projection f : G' —
W = W (a,b,b) exists. Color vertices of G, such that a vertex u of degree
three gets black color, if f(u) = v, and is colored white when f(u) = w. The
length [ can be expressed either asa+a+---+a,or b+b+---+b. Hence,
each vertex has two neighbors of the same color (when the b-pattern is used
in G’ along the corresponding path), and exactly one vertex of the opposite
color: note, that the number of summands equal to a in the expression
l=a+b+a---+b+ais odd.

In the opposite direction assume that G allows a BW (2, 1)-coloring. The
maximal subpaths of G’ can be partially covered into W exactly by the same
way, as was shown in the proof of B(a,b,b) problem. O
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Theorems 3.12 and 3.13 gives us also the full characterization for the
class of W (a, b, b)-partial covering problems, i.e., the problem of testing the
existence of a partial covering of weight graphs with both cycles of the same
length.

Corollary 3.14 The W (a, b, b)-partial covering problem is polynomially solv-
able, whenever b is divisible by a strictly higher power of two than a, and is
NP-complete otherwise.

3.2.2 Three parameters

One of the necessary conditions of the existence of an partial covering pro-
jection states that the mapping of a selected maximal path allows only a
restricted set of patterns. We perform the first classification of the maximal
subpaths by the length of the path.

For this purposes we introduce an argument based on the solving of a
equation in natural numbers with special requirements:

Definition Let J = {ji, ..., jr} be a set of distinct positive integers. We say
that m has a path covering pattern with respect to J of type (a,b) and length
[, if there exist integers x;,1 < i <1 satisfying

e m=zx+ -+x
e ;€] 1<:1<]
e 11 =a, =0,

® T, | #Tp# Tpr1 whenever x,_y or Ty are defined.

Note that whenever m has a solution of type (a,b), then it can be trans-
formed into a solution of type (b,a) and the same length. Hence, the type
of a solution will be always expressed by an unordered pair.

Now, we focus our attention to “simple” graphs with three different
parameters a, b and c. Although we cannot give a complete characterization,
there still appear several NP-complete instances of the H-partial covering
problem as well as polynomially solvable cases. We start the classification
by banana graphs.

Lemma 3.15 The B(a, b, c)-partial cover problem is NP-complete whenever
there exists m, such that m has a path covering pattern of type (c,c) of an
odd length, and a pattern of type (a,b) of an even length, and no other
covering patterns exist with respect to J = {a,b,c}.
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Proof: We show a reduction from the BW (2, 1)-coloring problem. Let G be
a cubic graph, whose black and white coloring is questioned. We replace each
edge of G by a path of length m, and show that the new graph G' = G™
allows a partial covering to B = B(a,b,c), if and only if G has a proper
BW (2, 1)-coloring.

Denote by v,w the two vertices of degree three in the graph B, and
assume that a partial covering projection f : G’ — B exists. Then every
vertex of degree three in G’ is mapped either on v or w. Color each vertex
u € V(G) black, if f(u) = v, and color it white otherwise. The mapping f
is locally injective on neighborhood of all u in G’, hence, one of the incident
edges (u,u') is mapped into a a-path. The maximal subpath of length m
that starts by the exposed edge can be covered only by the pattern of type
(c,c). The odd length of the path covering pattern implies that the opposite
end of the maximal subpath will be mapped onto the other vertex of degree
three in B, causing that u’ gets a different color from the color of wu.

By the same argument we can show that the even length of the path cov-
ering pattern of type (a,b) implies, that every vertex of G has two neighbors
colored by the same color.

In the opposite direction, assume a BW (2, 1)-coloring of the graph G.
The partial covering projection can be found by the technique already de-
scribed in the proof of NP-completeness of B(a,b,b)-partial covering prob-
lem. O

Corollary 3.16 The NP-completeness of the B(a, b, ¢)-partial covering prob-
lem is maintained, even if at most one of the following cases occurs:

e m has a covering pattern of type (a,a) or (b,b) of an even length, or
e m allows a pattern of type (a,c) of any length, or
e m has a pattern of type (b,c) of any length,

in addition to the mandatory covering patterns of type (a,b) and (c,c) de-
seribed in Lemma 8.15.

Proof: The existence of the new covering patterns does not influent the
fact that any black and white coloring of graph G can be transformed into
a covering projection f : G’ — B.

We shall prove that the opposite implication is still valid. Any pattern
described in the first case makes no contradiction, since the paths which
covering starts by the a or b-segment, yield a vertex of the same color.
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One could be more careful when discussing the existence of a pattern of
type (a,c). Every vertex of degree three in G’ has assigned three maximal
paths, and the covering projection of each of these three maximal subpaths
starts by a different path of B, namely a,b and c-path. The number of
appearance of the a-path as a stating segment is the same as the number
for b-path or c-path.

On the other hand, even a single use of the covering pattern of type
(a,c) in the covering projection breaks the equality (the a-path is used more
frequently than the b-path), and hence the pattern of type (a,c) cannot
appear in the covering projection G’ — B.

Due to the symmetry between a and b, we get the same argument for
the third case considering covering patterns of type (b, c). O

Theorem 3.17 [17] The B(a,b,c)-partial cover problem is NP-complete
whenever a + b divides c.

Proof: We apply Lemma 3.15 for m equal to ¢. The only covering patterns
are m = ¢ of type (¢, ¢) (odd length) and m =a+b+a+b+---+a+bof
type (a,b) (even length). O

The above approach yields the complete characterization of the compu-
tational complexity of the H-partial covering problem for banana graphs
with parameters 1,2 and c.

Theorem 3.18 [17] The B(1,2,c)-partial cover problem is NP-complete for
all ¢ > 3.

Proof: If ¢ = 3k, then the result follows directly from Theorem 3.17.
When ¢ = 3k + 1, then putting m = ¢+ 1, we get the following covering
patterns m =2+14+2+142---4+2 and m = ¢+ 1. Similarly, for ¢ = 3k +2
we select m = ¢+ 2, and get patterns m=1+2+.---+1=14c¢+1 and
m=c+2. 0

The smallest triple of parameters for the B(a, b, ¢)-partial cover problem
which is not tractable by the above technique is 1,3 and 5. It is a direct
consequence of the fact that the banana graph B(1,3,5) is bipartite, hence
the distribution of vertices of degree three of an input graph G into the
classes of the same target under a partial covering projection to B(1,3,5)
follows from the bipartition of the graph G, and can be solved in polynomial
time.

We use the result on the edge precoloring extension to prove, that finding
a partial covering projection to B(1,3,5) is a NP-complete problem.
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Figure 3.5: The green gadget

Proposition 3.19 The B(1,3,5)-partial covering problem is NP-complete.

Proof: We show a reduction from the edge precoloring extension problem
described in Theorem 3.4. Assume G is a cubic bipartite graph, whose edges
are either blank or precolored by red, green or blue.

We replace each blank edge by a path of length eleven, each blue edge
by a path of length three, and each green edge by the gadget depicted in
Fig. 3.5. Denote the new graph by G'.

Consider a partial covering projection f : G' — B(1,3,5). The graph G’
has maximal subpaths of lengths 1, 3, 5 and 11 and by exploring all possible
cases, we get that all covering patterns are of type (1,1), (3,3) or (5,5) of
an odd length, namely the trivial patterns, 1 = 1, 3 = 3, 5 = 5 and four
nontrivial patterns 5=1+3+1land 11 =14+5+14+34+1=34+5+3 =
3+1434143 =5+1+4+5. We color every edge of G red if the covering of the
corresponding maximal subpath in G’ starts with a 1-path of B = B(1,3,5),
we color it blue if the 3-path is used as the starting segment, and green for
the 5-paths, respectively.

Obviously, the new coloring of the graph G is an extension of the given
precoloring (note that the pattern 1+3+1 is never used due to the construc-
tion of the green gadget), and the local injectivity of the partial covering
projection implies that every vertex of G has all three incident edges colored
by pairwise distinct colors.

Now, consider a proper extension of the precoloring of G. It can be
simply transformed to a partial covering projection G’ — B, by using the
covering patterns described above. O

The covering projection to a weight graph has a more complicated struc-
ture. We present a polynomial reduction from the BW (2, 1)-coloring prob-
lem to show that there are several NP-complete instances, but for this pur-
poses we require different properties of the covering patterns.

Assume a maximal subpath of length m (with both ends of degree three)
in a graph G, that partially covers W = W (a, b, ¢). Then m can be expressed
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as a sum x1 + - - - + x; satisfying:
e z; €{a,bc} 1 <i<lI,

e if ; = a then z;_; # a and z;1; # a, whenever x;_1 or x;41 are
defined,

o if z; = z; € {b,c},i < j, then the number of summands among
Tit1, - Tj—1 equal to a is even.

Observe, that the above properties also imply, that whenever x; = b and
xj = ¢, 1 < j, then the number of a elements among 11, ...,z; 1 is odd.

Definition Call the expression m = x1+---+x; the weight covering pattern
of type (x1,x;) if all three properties defined in the previous paragraph are
satisfied. Define the parity of the pattern as the number of elements from
the sum, that are equal to a.

Lemma 3.20 The W (a,b, c)-partial covering problem is NP-complete, when-
ever there exists an integer m, such that the only weight covering patterns

with respect to (a,b,c) are of type (a,a) and the odd parity, and of type (b,b)

and (c,¢) (of an even parity due to the definition) and that for each allowed
type and parity at least one covering pattern exists.

Proof: The reduction from the BW(2,1) problem is straightforward, and
is done by the same method as in Lemma 3.15. Recall that the partial
covering of graph G' = G*™ onto W = W (a, b, ¢) defines a proper black and
white coloring, where the odd parity along the pattern of (a,a) type forces
distinct colors of vertices incident to the corresponding edge in GG, while the
patterns of an even parity connect vertices of the same color.

The opposite direction is even simpler, since each color class of vertex
color of G use patterns with both ends colored by the fixed color. O

Theorem 3.21 The W (a, b, ¢)-partial cover problem is NP-complete, when-
ever a is a common multiple of b and c.

Proof: Put m = a. The only possible covering patterns are m = a =
b+b+---+b=c+c+ - -+ c, that are required for the application of
Lemma 3.20. O

Corollary 3.22 The W (a, 1,2)-partial covering problem is NP-complete for
all even a > 2.
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We conclude the section by showing that the seemingly harder class of
W (a, b, ¢)-partial covering problem surprisingly allows a polynomially solv-
able instance.

Proposition 3.23 The W (1,2, 4)-partial cover problem is solvable in a poly-
nomial time.

Proof: Let G be the graph whose partial covering to W = W(1,2,4) is
questioned. Call v € V(W) the vertex of degree three belonging to the cycle
C4, and call w the other vertex of degree three. We refer the edge (v, w) as
the central edge of W.

The multigraph W is bipartite, hence we can assume that G is bipartite
too, otherwise no partial covering exists. If G is a cycle, then a partial
covering exists, if and only if G is an even cycle. In the following, we
assume G has at least one vertex of degree three. Find the bipartition of
V(G) = AU B, and denote As, Bs the vertices from the set A of degree
three, or from the set B respectively.

We show a test of the existence of a partial covering projection f : G —
W satisfying f(A3) = v, f(Bs) = w. By the symmetry of sets A and B, we
can perform the same test with sets A and B interchanged. If both tests
fail, then no partial covering projection exists.

Let f be a mapping on vertices of degree three, which we want to extend
into a partial covering of the entire graph G. Consider a maximal subpath
of length [ in G with both endpoints u, u’ of degree three. According to the
length [ and mapping of its endvertices, it can be decided in constant time,
whether there exists a partial covering of the maximal subpath extending f,
and having none, single or both initial edges mapped onto the central edge
of W. Denote the set of all possibilities J(I, f(u), f(u')) C {0,1}2. Note
that unsymmetric pairs [0, 1] and [1,0] can occur in J(I,v,w).

We build a graph G’ by replacing each maximal subpath of length [ con-
necting vertices v and ' by a single edge, and put Jy, ) = J(I, f(u), f(u'))
whenever both u and u' are of degree three and Jp, ) = {0, 1}2 otherwise.

In addition put I, = {1} for all vertices of G', and ask whether there
is a proper subset of halfedges S C HE(G'), satisfying oriented constraints
given by sets I, and Jj, .. Due to Lemma 3.3 this problem can be solved
in polynomial time.

The existence of the set S is a necessary condition for any partial cov-
ering, and we show that it is also a sufficient condition. By the definition
of sets Jp, . there always exists a weighted covering pattern of the cor-
responding maximal subpath connecting vertices u and v’, mapping only



THE H-PARTIAL COVER PROBLEM 61

those initial segments on the central edge, that are selected by the subset
of halfedges S, and mapping the other initial segments into cycles in W.
Therefore, the subset of halfedges S can be transformed in polynomial time
into a partial covering projection G — W (1,2,4). O

3.3 Further research

We showed that the complete characterization of computational complexity
of H-partial covering problems is close related to the complexity character-
ization of the class of H-covering problems.

An open instance of the H-partial covering problem is rather expected
to be NP-complete, not only for the strict inclusion of the NP-complete
instances, but also due to the fact that the algorithm based on the classes
of degree refinement does not work for partial covers. We expect that many
large ground graphs are NP-complete instances of the H-partial covering
problem.

It seems, that the variety of the cycle structure of the graph is essential
for the NP-completeness of the H-partial covering problem, and although
we are far away to prove the statement, we offer the following conjecture.

Conjecture 3.24 The H-partial covering problem is NP-complete when-
ever H contains K4 as a minor.

We have illustrated the diversity of complexity results of the H-partial
covering problem on “simple” graphs whose H-covering problem is known
to be polynomially solvable, and showed that many of them turn to be
NP-complete instances when asking for partial covers. Moreover, the cases
that remain polynomially solvable require a more complex technique, in this
thesis usually based on the matching algorithm.

We shall finally remark that bipartite targets require a special approach,
since the partial covering projection on vertices of higher degree is partially
determined by the classes of bipartition, that might substantially simplify
the computational complexity of the corresponding H-partial covering prob-
lem.



Chapter 4

The A-labeling problem

4.1 Motivation

We start this chapter by a practical motivation for the graph theoretic model.

The telecommunication industry uses the modulation of electromagnetic
waves for signal transfer, e.g., in the television or radio broadcasting, or
in mobile telephony networks. The radio transmitters generate and receive
such a signal, and are distributed onto earth surface in a network, that covers
as largest area as possible. Each transmitter uses one or several frequencies,
so that any device that is close enough and has tuned the same frequency
can establish the communication.

When two transmitters are close enough and have assigned the same
or almost the same frequency, then their simultaneous broadcasting causes
that these waves interfere so no reception is possible at their neighborhood.

The range of possible wavelengths is limited due to the physical and
organizational reasons, so there is a natural motivation to reuse the same
frequencies on distant transmitters, and cover the largest area by the shortest
range of frequencies, while maintaining the necessary difference between
close transmitters.

There are several models considering various aspects — global or lo-
cal interference, static or dynamic system, frequency separation or distance
separation, see [43, 56] for an overview of possible models.

We present a simple graph theoretic model for the above optimization
problem. Transmitters are represented as vertices of a graph, where edges
connect vertices in a close distance. We suppose, that each transmitter (ver-
tex) needs to assign only one frequency (i.e., a nonnegative real number),
that the difference between two frequencies is simply calculated by the sub-

62
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traction, and that this difference should be greater than some prescribed
constant c¢. A practical implementation should demand a proportional fre-
quency difference, but after applying the logarithmic transformation of fre-
quencies we get the “subtraction” difference.

The next simplification step allows us consider only natural-valued fre-
quencies, because instead of assigning real numbers, it is possible to use
multiples of ¢ [25] and perform all calculation and comparison modulo c.

We have translated the problem of selecting a suitable set of frequencies
to the graph coloring problem, because we ask for a minimal numbering of
vertices of a given graph, such that adjacent vertices get different numbers.

We have used several results from the the graph coloring theory in the
chapter devoted to graph covers, because this discipline is one of the old-
est and the best developed part of graph theory and many structural and
complexity results were already discovered.

A more sophisticated model of the channel assignment problem considers
also interference of transmitters at a quite longer distance. In the new model,
we ask for an assignment of nonnegative integers to the vertices of a graph,
and we demand that vertices at distance ¢ have assigned numbers that differ
by at least p;, where (p1,po,..,pr) is a fixed non increasing sequence of
natural numbers.

More formally, we define:

Definition A function c: V(G) — Ny is called a Ly, . p,)-labeling, if
dist(u,v) =i <k = |e(u) — c(v)| > p;.

Let X be a positive integer. If all vertices of a Ly, ) -labeling have
labels less or equal to A, then we call the labelling a A, -labeling.

The minimum X such that a graph G admits a A, -labeling is de-
noted by A, .p)(G).

la--apk')
155Dk)

We are interested in the computational complexity of the determining
the optimal A(,, . p,)-labeling. Hence we define the two following classes of
decision problems:

Problem: A(p1, .., px)-labeling problem
Input: A graph G
Question: Is Ay, 5y (G) < A7

And more generally:
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Figure 4.1: An example of a 5, ;)-labeling of a graph

Problem: L(py,..,p)-problem
Input: A graph G, nonnegative integer A
Question: Does G allow a A, . ».)-labeling?

The L(p1, .., pi) decision problem generalizes the class of all A\(py, .., pg)-
labeling problems, because, if for a certain A the A\(p1, .., pr)-labeling problem
is NP-complete for a certain class of graphs, then for the same class of graphs,
the L(p1, .., pk)-problem is NP-complete, as well.

While studying properties of a L,, ., -labeling, we can consider only
labelings such that parameters py, ..., pr have no common divisor.

Lemma 4.1 All graphs G and all constants a € N satisfy:

A( G)=a-X\ G)

aplzaPQa“aapk:)( pl:p27--7pk)(

Proof: The < inequality is obvious, since by multiplying each label of
an optimal A, p, . ,.)-labeling by a, we got a A(ap, aps....ap,)-1abeling of G.
On the other way when a A(gp, aps,...ap,)-12beling of G is given, we replace
each label ¢ by [c/a]. We obtain a Ay, ,, n.)-labeling of G, because, if
lc — | > ap;, then |a|c/a| —a|cd'/a]| > ap; and ||¢/a] — | /a]| > p;. O

In the rest of the thesis we will deal with labelings with two parameters
p and ¢, and due to the above lemma we suppose, that without lost of
generality, p and ¢ are relatively prime. Also note, that any optimal A(,)-
labeling is equivalent to a A()-labeling with all labels multiplied by p. Every
Ay-labeling of a graph is a ordinary coloring using at most A + 1 colors.
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We can express the minimum number of necessary labels as A, (G) = p -

(x(G) = 1).

Corollary 4.2 The \(p)-labeling problem is NP-complete for X > 2p with
respect to the class of all graphs.

If parameters p and ¢ are equal, then due to Lemma 4.1 it is sufficient
to explore properties of the L(; 1)-labeling of a given graph G. This labeling
uses distinct labels along each edge, and, moreover, if two vertices share a
common neighbor, then they have different labels too. In the other words,
the labeling is locally injective to the set of labels, and when we model the
labels 0,1,..,A as the vertices of complete graph K1, then each A¢ 1)-
labeling of G corresponds to a partial covering projection G — Ky 1.

We already showed by Theorems 2.17, 2.18 and 3.1 that the K -coloring
problem is NP-complete whenever A > 3, and is polynomially solvable oth-
erwise (see Corollary 2.12).

Corollary 4.3 The A(p, p)-labeling problem is NP-complete, for X > 3p and
the class of all graphs.

4.2 The A\ -labeling problem

The first non-trivial parameters of the L(p, ¢)-labeling problem are param-
eters p = 2,q = 1. Historically this is the original form of a graph labeling
problem with a condition at distance two [58, 25]. In this section, we review
results on calculating A3 1)(G), and on the computational complexity of the
A(2, 1)-labeling problem.

Griggs and Yeh showed that the number A\, 1)(G) can be easily deter-
mined for paths, cycles and wheels.

Proposition 4.4 [25, 58] Let P, be a path on n vertices. Then \(21)(P2) =
2, )\(2’1) (P3) == )\(2’1) (P4) == 3, and )\(2’1)(Pn) =4 fOT‘ all n Z 5.

Proposition 4.5 [25, 58] Let Cy, be a cycle of lengthn. Then A3 1y(Cp) = 4
for all n > 5.

Proposition 4.6 [58] Let W,, denote the wheel graph on n+1 > 4 vertices
formed from a cycle C,, and a star Sy, by unifying each vertex of the cycle
with a unique vertex of degree one of Sy. Then A1) (Wy) = n+1 for all
n > 3.
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The number A1) for trees can not be stated explicitly, but only two
cases can Occur.

Theorem 4.7 [25] Let T be a tree with the mazimum degree A(T) > 1.

However Griggs and Yeh [25] conjectured that the L(2,1)-problem for
trees is NP-complete, Chang and Kuo [8] gave a polynomial time algorithm.
In Section 4.2.3 we show a polynomial time algorithm solving the L(2,1)-
problem for the class of k-almost trees with fixed k.

Now consider the class of all graphs. Then the following upperbound
holds:

Observation 4.8 [25, 58] X(2,1)(G) < A(G)? + 2A(G).

Proof: We prove the observation by induction on the number of vertices.
If G has one vertex, then the statement is trivially satisfied.

Select a vertex v € V(@) arbitrarily and label the graph G \ {v}. By
induction hypothesis, there exists a labeling with the maximum label at
most A(G)? 4+ 2A(G). We show that among numbers [0, A(G)? + 2A(G)]
there is at least one suitable for the label of the vertex v. The vertex v has
at most A(G) neighbors, and the label of each of them blocks at most three
possible labels for v. In addition there are at most A(G)? — A(G) vertices
at distance two from v, and their labels also can not be used as the label of
v. This gives us at most A(G)? + 2A(G) forbidden labels for v, and at lest
one number remains in the interval [0, A(G)? + 2A(G)] as a suitable label
of the vertex v. 0

The above upperbound on A(G) was improved to A(G)? + A(G) in [8].

It was conjectured by Griggs and Yeh [25], that all graphs with maximum
degree A > 2 allow a (A(G)?)(2,1)-labeling. The conjecture is still open, even
if it was proven for restricted classes of graphs like chordal graphs [55], or
graphs of diameter two [25].

4.2.1 Partial covers and generalized L(2,1)-labeling

The general implementation of the channel assignment problem considers

also spaces with non-linear metrics. For example, by using this approach, it

is possible to describe an interference between a frequency and its multiples.
We will describe this setting as a graph-homomorphism model.

Definition Let H be a simple graph. A H(y 1)-labeling of a graph G is a
mapping f : V(G) — V(H) satisfying:
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1. if (u,v) € E(G), then distg(f(u), f(v)) > 2,
2. when distg(u,v) = 2, then f(u) # f(v).

In other words, any H(y 1)-labeling of G satisfies the homogeneous con-
dition: distg(u,v) + distg(f(u), f(v)) > 3.

In this concept, every A, 1)-labeling is equivalent to a (Py;1)(2,1)-labeling.

For example, a labeling satisfying constraints (2,1) with circular metric
was considered by Leese, van den Heuvel and Shepherd in [56, 43, 42], and
is equivalent to the (C,)(z,1)-labeling.

Proposition 4.9 A graph G allows a Hy 1)-labeling, if and only if G par-
tially covers H.

Proof: Consider a Hy j)-labeling f : V(G) — V(H). The first condition is
equivalent to the statement that f is a homomorphism to the complement of

H, since the condition disty(f(u), f(v)) > 2 implies (f(u), f(v)) € E(H).
The second condition expresses that c is a locally injective mapping. 0

The decision problem, parameterized by the graph H, which asks whether
an input graph G admits a H(y )-labeling, will be called the H(y 1)-labeling
problem.

Corollary 4.10 The computational complezity of the H(2,1)-labeling prob-

lem is equivalent to the computational complexity of the H-partial cover
problem.

In view of Theorems 2.17 and 2.18, and Corollary 4.10, we get the fol-
lowing statement:

Theorem 4.11 The C,,(2,1)-labeling problem is NP-complete, if and only
if n > 5.

4.2.2 Computational complexity of the \(2,1)-labeling prob-
lem

The concept of the Ly, . ,,)-labeling of a graph is derived from the tradi-
tional graph coloring theory, and we have already shown that any proper
graph coloring is equivalent to the L(j)-labeling. Since the problem of de-
cide whether a graph can be colored with k& colors is NP-complete for every
k > 3, we expect that every L(p1, ..., px)-problem is NP-complete. We will
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B(1,2,3) = P Ps
() U2
VU3 U1 U3 U1

Figure 4.2: Graphs B(1,2,3) and P;

prove the above conjecture for all labelings with two parameters in Theorem
4.16.

In particular the NP-completeness of the L(2,1)-problem was explored
by Griggs and Yeh in the following special form: They proved that the
L(2,1)-problem is NP-complete, for graphs of diameter two and A = |V (G)|
[25, 58].

Using a proof technique based on partial covers, we improve the above
result to a full complexity characterization of the class of A(2,1)-labeling
problems.

Observation 4.12 The 4(2,1)-labeling problem is NP-complete.

Proof: The banana graph B(1,2,3) is the complement of the graph P, see
Fig. 4.2. The NP-completeness of B(1,2,3)-partial cover follows from The-
orem 3.17 and we get the NP-completeness of the 4(2,1)-labeling problem
due to Corollary 4.10. O

Our proof technique uses frequently the following lemma, which shows
that on a certain set of vertices we can effectively reduce the set of possible
labels.

Lemma 4.13 Every vertex of degree A — 1 is labelled either by 0 or by A,
under any A(2,1)-labeling.

Proof: Due to Proposition 4.9 we can investigate the partial covering to
Py 1, instead of the A(p1)-labeling. Any partial covering f is locally injec-
tive, and, therefore, degg(u) < degPHl(f(u)). The biggest degree of graph

Py,1 is A — 1, and only two vertices, namely vp and v,, reach that maximal
degree. Hence, every vertex u € V(G) of degree A — 1 maps either onto vy
or v). O

Theorem 4.14 [17] The A(2,1)-labeling problem is NP-complete for all X >
4, and is polynomially solvable otherwise.
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Figure 4.3: Graph P; and the replacement graph @

Proof: The case A < 4 follows from Corollary 2.12. All graphs P;, P, P3
and P, have at most one cycle and hence the corresponding partial covering
problems are solvable in polynomial time.

We prove the statement by the induction by two on A\. The case A = 4
was proven by Observation 4.12. For A = 5 we show a reduction from the
BW (2, 2)-coloring problem.

Let G be a fourregular graph, whose BW (2, 2)-coloring is questioned.
Replace each edge (u,u') of G by a graph @ depicted in the Fig. 4.3, such
that u corresponds to p and vice versa for u’. Call the new graph G’ and we
show that G’ covers Ps (see Fig. 4.3), if and only if G admits a BW (2, 2)-
coloring.

Due to Lemma 4.13, all vertices of degree four in G’ are mapped onto
vp or vs. We define a coloring of G as follows: color a vertex u black, if its
mirror in G’ is mapped onto vy, and color it white otherwise.

Note that all vertices p,p’,p” € V(Q) are mapped onto vy or vs under
any partial covering to Ps. The case study shows, that there are only six
partial covering projections f : Q — Pg satisfying f(p), f(p') € {vo,vs}. All
six cases are depicted in Fig. 4.4.

Consider a covering f : G’ — P; and suppose that a vertex u of G is
black. Denote its mirror in G’ by u'. The vertex ' is mapped onto vy and
its neighbors are bijectively mapped onto the vertices vo, v3, vq4 and vs.

Suppose v’ is identified with p in . When its neighbor r is mapped
onto vs or vy then due to the case study the vertex p’ is mapped onto vy and
hence two neighbors of u have the same — black color. If f(r) € {vs,v4}
then f(p') = vs and on the other two neighbors of u are white.

Colors of the neighbors of a white vertex can be discussed by the same
argument.

For the opposite direction consider a BW (2, 2)-coloring of the graph G.
First consider a subgraph of G spanned by edges with both ends black. This
graph is 2-regular, i.e., a set of disjoint cycles. We cover the corresponding
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Figure 4.4: The six cases of partial covering Q — Ps

subgraph in G’, s.t. on the cycle the pattern vy, vs,vs, vy, v2,v5,vg,... is
used and the original vertices are mapped onto vy. By a similar argument,
cover the subgraph of G’ corresponding to the white cycles by the pattern
V5,V3,V0,V5,U3,00,U5,....

The remaining edges connect the set of white vertices to the set of
black vertices. These edges form a bipartite 2-regular factor of G, i.e. a
set of even cycles. For the corresponding subgraph of G’ we use pattern
Vo, V3,V1,VU5,U2,U4,0U0y. ..

We defined an injective mapping on the neighborhood of the original
vertices, since two neighbors of a mirror of a black vertex (mapped to vg)
are mapped onto vy and vs (in the “black” subgraph), while the other two
neighbors are mapped onto v3 and v, (in the “black—white” factor).
Induction step: We show that the Py 3-partial covering problem is NP-
complete, when A +2 > 6. We reduce the problem from the Py, -partial
covering problem, which we assume to be NP-complete by the induction
hypothesis.

Let G be an input graph for the Py j-partial covering problem. Form a
binary tree T with at least |V (G)| leaves, all of them in the same distance
from the root. Denote by L; the set of vertices of T at distance i from the
root, and suppose that the layer L; ;| contains all leaves. Add into T" a layer
Ly, with |Lj_q]| vertices, and connect it by a perfect matching to the vertices
of layer Lj; ;. Subdivide each edge of the tree by an extra new vertex, and
join every vertex of G by an edge to a unique vertex from L, see Fig. 4.5.
Finally introduce extra new leaves to increase the degree of vertices in all
layers L;,7 < k upto A + 1. Call the new graph G’.

We show that G’ partially covers Py 3, if and only if G covers Py, .
Consider a covering f : G' — Py,3. By Lemma 4.13 all vertices in layers
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Figure 4.5: The construction of the graph G’ (leaves are not included)

L;,i < k are mapped onto vy or wyio. All vertices in layers with even
subscripts are mapped onto the same vertex (and vice versa for the odd
subscripts), since there cannot appear two vertices form two consecutive
layers with the same image under f.

W.lo.g., assume that all vertices in L map onto vy;e. Then no ver-
tex from G can map either on vy,9 nor vy,;. Hence, G covers Py,3 \
{oat2, va41} = Paja. -

In the opposite direction, suppose, that G covers P\, ;. Extend the
partial covering to the entire graph G’ as follows: Vertices from layers L;,
where ¢ = k£ (mod 2), map onto vy;o. Vertices from L; : ¢ # k (mod 2)
map onto vg. Starting from the root of the tree T select a feasible image
for every vertex between layers L; 1 and L;, : = 1,...k. Note, that the
above selection can be done also for every vertex u between layers Lj and
Ly, since its two neighbors are mapped onto vy and vy 9, and it must be
mapped into set {vy,... ,vy}. Moreover, there are two vertices at distance
two from uw and f(u) has to be different from their images. Since A > 4, at
least one feasible image for u remains, see Fig. 4.6 showing the forbidden
labels.

Finally find a feasible image for all vertices of degree one adjacent to all
layers L;. O
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G Ly, Ly

Figure 4.6: Forbidden images for u are vg, vi,vay1, var, f(u'), f(u”)

4.2.3 The )\(;;)-labeling of sparse graphs

We conclude the section by exposing a class of graphs, for which the existence
of a A(g,1)-labeling can be tested in polynomial time. The base algorithm
was designed for trees by Chang and Kuo [8], but we show its extension
to the class of k-almost trees and prove that the A(2, 1)-labeling problem is
solvable in linear time when the parameter k is fixed.

Definition A k-almost tree is a connected graph on n vertices with n+k—1
edges.

Theorem 4.15 [18] The X(2,1)-labeling problem is solvable in O(X2F+9/2n)
time for the class of k-almost trees on n vertices.

Proof: Let G be a k-almost tree and consider its spanning tree. There
are exactly k edges that are out of the spanning tree. We denote them by
_ !
€1 = (U‘la Ul)? ey Gk
There are at most O(A?F) A(2,1y-labelings of the vertices {u;,uj : i =
1,...,k} and we show a polynomial-time algorithm that tests whether such
a labeling f can be extended to the entire graph G.
For every edge e; add into G two extra new vertices v; and v}, remove the

edge e; and replace it by the two edges (u;,v;) and (u},v}). This operation

27 7
interrupts all cycles in G, hence the new graph T is a tree. For each i =

]-7 "'7k7 set f(vz) = f(u;) and f(l);) = f(ul)

The labeling f can be extended to G, if and only if f allows an extension
to T'. The “only if” implication is obvious, for the other direction we note,
that any path including the edge e;, and connecting a neighbor x of u; to
a neighbor 2’ of u}, has length three. Hence, no combination of labels f(z)
and f(z') can violate the properties of the A(2,1)-labeling, when re-creating
the edge e;.
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We show a modification of the algorithm of Chang and Kuo [8] that tests
whether a tree allows a A(;j)-labeling, and the tree contains pre-labeled
leaves.

Suppose that T is rooted in the vertex v;. Use dynamic programming,
and for each edge e = (x,y) of T, where x is parent of y, determine the set
Se of all A3 1)-labelings of e, that contain the labeling f and can be extended
to the subtree of T', consisting of z, y, and all descendants of y.

When e is a leaf, then the set S, is explicitly defined, even if one or both
vertices of e are already labeled by f.

Consider a edge ¢ = (7,y), and assume that sets S, ) are known for
all descendants z of y. Then the set S, includes a pair (a,b), if and only if
la — b| > 2, and for each z, we can select a unique representative from the
set {c: (b,c) € S,,c # a}. The system of distinct representatives can be
found in O(\%/?) time by the matching algorithm.

The tree T allows a Ag,1)-labeling, if and only if the pair (f(v1), f(u1))
appears in the set Sy, 4. g

Note that the L(2,1)-problem is polynomially solvable for trees, because
due to Theorem 4.7, we have to test only the case A = A(T) + 1.

4.3 The general \(p, g)-labeling problem

However, the direct relation between partial covers and the channel assign-
ment problem with general parameters p and ¢ disappears, when g is at least
two, we can prove the NP-completeness of several A(p, ¢)-labeling problems
by the similar proof methods, like those we used for complexity characteri-
zation of (partial) covering problems.

We prove, that when parameters p and ¢ are fixed, then at least one
instance is NP-complete in the class of A(p, ¢)-labeling problems.

In addition, under slightly stronger assumption p > 2¢, the class of
A(p, q)-labeling problems has a finite number of polynomially solvable in-
stances (here we assume P # NP, as well).

Theorem 4.16 [18] For every fized p,q : p > q > 1 the X(p, q)-labeling
problem is NP-complete for A =p+ q[%}.

Proof: We show a reduction from the BW (2, k)-coloring problem for k£ =
)

Let G be a (k + 2)-regular graph, whose feasible BW (2, k)-coloring is
questioned. Replace each edge of G by a path of length three, and call the
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new graph G'. We show that there exist a A(, o)-labeling of G', if and only
if G allows a proper BW (2, k)-coloring.

Suppose, that a A, ¢)-labeling f of G’ exists. The vertices of degree k+2
are labelled either by 0 or by A, because when another label is used, there
is no sufficient space to label all its k& + 2 neighbors.

Consider a vertex ug of degree k+ 2 in G’, that is labeled by 0. Then its
neighbors are labeled by p,p+q,p+2q, ..., A\—¢q and A, and no two neighbors
have the same label. Consider a path of length three P = (ug,u1,us,us).
When u; is labeled by p or by A, then the vertex ug (of degree k 4 2) is also
labeled by 0 and the pattern (0, p, A, 0) is used on P. If u; is labeled by one
of p+ q,...,A\ — q then the vertex ug is labelled by A, because the label of
ug can attain the number A — p — ¢ < p. Hence, among k + 2 vertices at
distance three from wg, k of them are labelled by A and the remaining two
have assigned label 0. Due to the symmetry of any A, ,y-labeling, the vice
versa holds for vertices that are labeled by A.

We define a BW (2, k)-coloring of G as follows: Color a vertex black, if
the corresponding vertex in G’ is labelled by 0, and color it white otherwise.

In the opposite direction, suppose that a BW (2, k)-coloring of G is given.
The edges connecting white vertices induce a 2-regular subgraph, and on
the corresponding paths in G’ we use the pattern (0,p, A,0) cyclically. By
symmetry we use the sequence (A,0,p,\) between “black” vertices. The
edges connecting the sets of white and black vertices form a bipartite k-factor
of the graph G. Due to Theorem 1.5 these edges can be split into &k disjoint
1-factors. Then in G', use pattern (0,p + iq,ig, \) on paths corresponding
to edges from the i-th 1-factor of G. U

Theorem 4.17 For each p,q : p > 2q, the A(p,q)-labeling problem is NP-
complete whenever X > 9pq + 2p + g + 1.

Proof: In order to prove the statement, we will reduce the K4-cover problem
to the A(p, ¢)-labeling problem.

We first discuss properties of a special graph F', that will be used later
in the construction.

Express A as a linear combination ap + bqg, where a > 4+ 2,b > 4p + 1.
Coefficients a and b always exists, since the number A —8p —2p — ¢ is greater
to pq and can be expressed as a positive linear combination (a — 4q — 2)p +
(b —4p — 1)g. Denote by ¢ = (a — 1)([2] — 1) + b — 1. Put the vertex set

V(F) ={z = 20,27, 25, ..., Tp, T, ey T0, L1 -y T }

. The edge set consists of three types of edges E(F) = E°UE*UE™:
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Figure 4.7: The construction of the auxiliary graph F

o F° = {(xf,x;) :0<i<b,1<j<a} .. edges forming a complete
bipartite graph between o and e vertices.

o B*={(z},23): 1 <i<j<a} .. aclique on e vertices.
o 7 ={(z,2z7):1<i<c} .. cleaves added to the vertex z = zg.

Claim: The vertex z will be labeled either by 0,q, A\ — q or by A\, under any
A(p,q)-labeling of the graph F'.

Consider a A, o)-labeling f of the graph F. Vertices z7 induce a clique,
hence, their labels are pairwise at least p apart. Every pair of vertices z7 and
x;, has a common neighbor, so their labels differ by at least q. Moreover, the
set £° forms a complete bipartite subgraph, so labels of any z; differs from
label of any z7 by at least p. The only two possibilities of labeling these
vertices are: Either use labels {0,¢,...,bg} on V° = {27,0 < j < b} and
{p+0bq,2p+0bq,....,ap+bq} on V* = {z?,1 < i < a}, or reverse the labeling,
s.t. f(V°)={ap+bq,...,ap + q,ap} and f(V*) = {(a — 1)p,...,p,0}.

Without lost of generality suppose that z is labelled by iq, where 0 <7 <
b. Observe that at most L% —1] vertices of the set V= = {z;7,1 < j < c} can
use labels from the interval [bg, bg + p]. The same holds for any interval of
form [bq+ kp,bq+ (k+1)p] for any k < a—1. In total at most (a—1) L% —1]
vertices of V'~ vertices can be labeled using labels greater than bg. In V —,

there remain at least b— 1 =c— (a — 1) Lg — 1] unlabelled vertices. Hence,
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f(z) € {0, ¢}, because any other label of u does not leave sufficient space in
[0, bq] for labels of the remaining b — 1 vertices from V.

The case of f(z) = X or A — ¢ follows due to symmetry of the labeling,
i.e., the case f(z) € f(V°) = {ap + bq, ...,ap + q, ap}.

Now, we are ready for the reduction from the K4-covering problem. Let
G be a cubic graph whose covering to K4 is questioned. Form the graph H as
follows: for each vertex u € V(QG) insert into H a disjoint copy of the graph
F, and denote it by F,,. In each F; rename the vertices z,z, ,z, ,75,7, by
Zu, Uy Uy, Uy, Uy Where v,v" and v” are the three neighbors of the vertex u
in G.

The last step in the construction of the graph H glues together the
graphs F,: For each u € V(G), unify vertices u', v,, v}, v!/, and call the new
vertex s,.

We show that any A(p, ¢)-labeling f of H induces a covering projection
g:G— Ky. Let V(Ky) =0,q,\ — q, A, and put g(u) = f(2zy).

If v,v" and v" are neighbors of u in G, then the vertices z,, z,, 2y and z,»
get distinct labels, because they share a common neighbor s,. Immediately
g is locally injective, i.e., a covering projection.

In the opposite direction, suppose that the graph G covers K4 via g. In
H label all z, by a label from 0,q, A — ¢, A\, such that z, and z, gets the
same label, if and only if g(u) = g(u’).

In each F,, extend the labeling to vertex sets V° and V*, as claimed
earlier.

In the next step we label the set S = {s,,u € V(G)}. Every s, has at
most nine neighbors at distance two in S, hence, ten labels, that differs by
at lest ¢, are sufficient for a labeling of S. Use p+¢,p+ (p+ 1)g,p+ (2p +
1)gq,....p+Ap+1)g,A\—(p+(4p+1)q),..., \— (p+q) as these labels. Fig. 4.8
shows that there is no conflict with the other labels in H. (The first row
exhibits labels of V° and V'* when z is labeled 0 or ¢q. The last row describes
labels of these sets, when z is labeled by A or A\ — ¢g. The middle row shows
possible labels of the the vertex z and the set S.)

Now, the only unlabelled vertices of H are of degree one. Extend the
labeling f to these leaves, as was shown earlier when we discussed properties
of a labeling of the graph F. 0

4.3.1 Complexity of the \(p, 1)-labeling problem

In contrary to the A(p, ¢)-labeling problem with parameter ¢ being at least
two, the condition ¢ = 1 transforms to a searching for a labeling, where
vertices with a common neighbor gets distinct labels, but not distant labels.
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Figure 4.8: Ten labels are sufficient for the set S (comments in the text)

This allows us to state the equivalence between a A, 1)-labeling of a graph
G and a partial covering G — H) ,, where the graph H) , is defined as
follows: V(Hyp) = {vo,...,un}, E(Hyp) = {(vi,v5) : |i — j| > p}. The
complete characterization of the class of H-partial covering problems gives
the complete characterization of the class of L(p, 1)-labeling problems. As
a immediate consequence of Corollary 2.12, we get the lower bound on the
transition between polynomially solvable and NP-complete cases.

Corollary 4.18 The A(p,1)-labeling problem is polynomially solvable for
every A < p—+2,p > 3.

In [18], there is presented a reduction, showing that the A(p, 1)-labeling
problem is NP-complete whenever A > p + 5,p > 3.

In addition the matching algorithm used in the proof of Theorem 4.15
works also for parameters p > 2,q = 1, however, it has been proven NP-
complete when ¢ > 2 [18].

Corollary 4.19 For every fized k, the X(p,1)-labeling problem is solvable
in polynomial time for the class of k-almost trees on n vertices.



Chapter 5

Conclusion

Let us summarize what we have presented so far.

We started exploring properties of graph covering projections by expos-
ing the degree refinement, i.e., a factorization of the vertex set, that restricts
the image of a vertex under a possible covering projection. This structure
was essential during the polynomial reduction from the H-partial covering
problem to the H-covering problem.

The product of two graphs with respect to covers might be interesting
for its relation to the theory of categories, as well as for its application
in distributed computing. We showed that the structure of degree refine-
ment allows an extension using the factorization of edges into perfect match-
ings, and that this extension achieves categorical properties of the product.
On the other hand, we have mentioned results of Angluin, Gardiner and
Leighton on the existence of a common cover. Both constructions might be
interesting in the emulation concept as a minimal universal networks for a
certain class of parallel algorithms.

We have reviewed the recent results on the computational complexity of
the H-covering problem, and showed several instances that are polynomially
solvable, as well as NP-complete instances.

In Theorem 2.19 we have extended the result of Kratochvil, Proskurowski
and Telle, proving that all k-regular graphs H of k& > 3 are NP-complete
instances for the H-cover problem.

The class of all H-covering problems is not fully characterized yet and,
furthermore, no conjecture has been suggested for the boundary (if exists)
between tractable instances (those which allow a polynomial-time algorithm)
and difficult (NP-complete) cases.

A similar situation holds on the class of H-partial covering problems,

78
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Figure 5.1: Diagram on polynomially solvable and NP-complete instances

H-cover

even though there is a direct connection to the characterization of computa-
tional complexity of H-covering problems. Namely the class of NP-complete
instances of the H-partial covering problem is a superset of NP-complete el-
ements related to full covers.

We concentrated on graphs H, where it is known that the H-covering
problem is polynomially solvable, and we investigated whether this is still
valid when asking for a partial covering projection. Both NP-complete and
polynomially solvable instances were found. It deserves interest to find out
the extent to which matching and halfedge coloring methods are applicable,
as well as the question of why bipartite graphs are more frequently tractable
than the others (e.g., several bipartite banana graphs). The last question
relate homomorphisms and locally injective homomorphisms on bipartite
graphs, and would show, in which moment, the local injectivity causes the
H-partial covering problem to be hard.

Both H-cover and H-partial cover problems belong to so-called con-
straint satisfaction problems (CSP C NP). Assuming P # NP, it is ex-
pected that the class C'SP has a strict boundary separating NP-complete
and polynomially solvable problems, i.e., each problem belonging to CSP is
either polynomially solvable or NP-complete [41, 12].

We try to illustrate the relation of polynomially solvable and NP-complete
instances of H-coloring, H-cover and H-partial cover problems in Fig. 5.1.
The outer region corresponds to the NP-complete instances and the inner
area contains graphs for which an algorithm running in polynomial time
is known. The dotted boundary means that there exist instances where
computational complexity is still undecided.

The following list of examples shows that no region is empty:

I. W(1,2,4) or B(a*,b"), a and b odd,
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IT. even cycles Cox1,

III. B(1,3,5),

IV. B(a*, 1), a # b (mod 2),
V. K2, the cube graph (K3)3,
VI. complete graphs K.

In the last chapter, we have described a simple graph theoretic model for
the channel assignment problem, and have showed that several cases can be
reduced to partial covering projections. The same argument glues together
the characterization of the computational complexity of several classes of
the A(p1, ..., pr)-labeling problem with corresponding classes of the H-partial
covering problem, even on both sides, there are problems requiring their own
approach. Similarly, no full complexity characterization is known yet for the
A(p1, .., pi)-labeling problem, and even two parameters p, g expose a variety
of non-trivial reductions.

We have concentrated on the L(p,q)-labeling problem of almost trees,
and showed that there exists a fixed parameter tractable algorithm when the
parameter ¢ is at most one. As far as we know, the L(p, ¢)-labeling problem
is open for higher values of q.

We hope that we presented several interesting aspects connecting alge-
braic nature of graph homomorphism with the combinatorial optimization
methods that might find an application in the channel assignment industry.
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