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IntroductionThe graph covering projection, in other words a graph homomorphism that islocally isomorphic, appeared during the past four decades in various graph-theoretic concepts as well as there were presented its application in com-puter science, e.g. in distributed computing. In this thesis we would liketo exhibit further application of graph covering projections, namely in thegraph-theoretic model of the channel assignment problem. Like the applica-tion of covers in distributed computing, results in the frequency assignment�eld have high interest in computer and telecommunication industry.We shall start with a brief history of graph cover and its applications.We traced the �rst occurrence of the notion of graph covers to Conway [4]who in early sixties used a special kind of a covering projection in the con-struction of highly symmetric graphs in the proof that there are in�nitelymany �nite cubic 5-arc-transitive graphs. This approach was extended byDjokovi�c [11] to a construction of a in�nite class of �nite fourregular 7-arc-transitive and by Gardiner [20] to the antipodal distance-regular graphs in1974.Ne�set�ril and Pultr [53] showed in 1971 that every locally injective map-ping G! G of a connected graph G is an isomorphism of G.The structure of the set of all k-fold coverings of a given graph was char-acterized in 1977 by Gross and Tucker [26] in terms of permutation voltageassignments in a symmetric group of k elements. A simplier characterizationof all k-fold coverings was given by Bodlaender [7] in 1989, and the coveringprojection of directed multigraphs was introduced here, too.Embeddings of covering projections of graphs was considred in 1980 byClarke, Thomas and Waller [9].In 1981, Biggs [5] used graph covers to prove that a k-regular graph on2(k2 � k+ 2) vertices and girth 6 exists if and only if k or k� 2 is a perfectsquare. In his later paper from 1983 [6] he showed that covering graphsadmit groups of automorphisms related to the group of the base graph3



INTRODUCTION 4In 1988, Negami [52] conjectured that the class of projective planargraphs is equal to the class of graphs that have a �nite planar cover. Theinclusion fH is projective planarg � fH has a �nite planar covergis trivial, but the opposite is di�cult. The result could be possibly obtainedby the use of Robetson-Seymour theorem of forbidden minors, and only oneof 35 forbidden cases | namely the graphK1;2;2;2 | resists to be shown thatit allows no planar cover (see [29] for the case of K4;4 � e minor). Howeverthe conjecture is not proven yet, Hlin�en�y and Thomas [30] in 1999 showedthat the conjecture can allow only upto 16 possible counterexamples (uptoobvious constructions).Hofmeister [31] in 1991 counted isomorphism classes of k-fold coveringprojections onto a �xed graph G.Among recent results we shall mention the paper by Nedela and �Skovi-era [51] who in 2000 used graph covers to determine substantially small setof groups s.t. their Cayley graph could be a snark, i.e. cubic and non 3-edgecolorable.The graph covering projection became a standard construction in topo-logic and algebraic graph theory, see monographs [4, 27, 49].Graph covers play a speci�c role in the computer sicence. We review themost intersting results here.Angluin [2], Angluin and Gardiner [3] showed in early 80's that classesof graphs closed under taking covers can not be recognized by a distributedcomputing environment with a �nite �xed set of processor types. To provethe complete characterization, they conjectured that two graphs have a �nitecommon cover if and only if they have the same degree re�nement matrix,which was proved by Leighton [44] in 1982.Litovsky, M�etivier and Zielonka showed in 1993 [45] that the families ofseries parallel graphs and planar graphs cannot be recognized by means oflocal computations. This result was extended by Courcelle and M�etivier in1994 [10], who showed that any minor-closed class distinct from the classof all connected graphs which contains a graph with at least two cyclescannot be closed under taking connected covers. In practice this meansthat this class cannot be recognized by local computations, too | in thesense of bounded relabelling schemes over a possibly in�nite alphabet. Bothresults generalize the model of Angluin and Gardiner, since they concernonly �nite graphs. This negative characterization holds for example for the



INTRODUCTION 5class of connected planar graphs, the class of connected partial k-trees withk � 2, etc.Bodlaender in 1989 proved that every cover G of a connected graphH is a uniform emulation, that menas that a parallel algorithm designedfor the processor network G can be emulated on H where each node of Hcorresponds to a constant number of nodes of G. The same paper providedthe complete characterization of covers of the ring, the grid, the cube, thecube connected cycles, the tree and the complete graphs. Moreover it isshown there that the decision problem whether a graph G covers a graphH is at least as hard as the graph isomorphism problem, even if the ratiojVGj=jVH j is �xed.In the concluding remarks Bodlaender asked the computational com-plexity of the H-cover problem for �xed graph H. Abello, Fellows andStillwell [1] showed in 1991 that there are both polynomially solvable andNP-complete cases. The series of paper by Kratochv��l, Proskurowski andTelle [39, 38, 37, 36] from late 90's exhibits several approaches to establishthe most accurate boundary between the graphs for which the H-cover prob-lem is polynomially solvable and the NP-complete instances for the H-coverproblem.Kratochv��l, Proskurowski and Telle showed that su�ciently connectedregular graphs belong to NP-complete instances for the H-cover problem.Their proof requires the existence of a graph G which satis�es the followingproperty: For all its vertices u, the graph G allows an extension of a localisomorphism on the neighborhood of u into a covering projection G ! H.The construction of this multicover G involves an algebraic method thatgeneralizes the building of common covers used by Angluin, Gardiner andLeighton.The multicover technique gave rise to the notion of the partial coveringprojection. Its importance increased when it was used as a tool in theproof of NP-completeness of the graph labeling problem with condition atdistance two [18]. Here we would like to introduce some recent aspects ofgraph theoretic models of the channel assignment.The concept of graph labelling satisfying constraints (2; 1), that is fre-quently considered in this thesis was introduced by Griggs and Yeh [25, 58].This concept was motivated by the channel assignment problem, althoughthe telecommunication industry may in certain cases demand a more so-phisticated model, see Leese's survey [43] for more details. On the otherhand, Leese showed that in several other cases the general graph theoreticsetup for the channel assignment problem could be su�ciently accurate and



INTRODUCTION 6results in fast nontrivial algorithms [42].The graph labeling with condition at distance two, the so called L(2; 1)-labeling, resulted to an interesting graph structure and initiated both thegraph-theoretical and the computational research. The main aim in pastten years is the speci�cation of the maximum label �(G) that appears in anoptimal L(2; 1)-labeling of G, see papers by Chang and Kuo [8], Jonas [33],Liu and Yeh [46], and by Sakai [55] on chordal graphs and by Whittlesey,Georgess and Mauro [57] on cubes.One can �nd several interesting approaches like the relation of the param-eter �(G) to another graph invariant: the path covering number [23, 22] byGeorges, Mauro and Whittlesey in 1994 or the question of which graphs al-low only optimal labelings that use the full range of labels, see Fishburn andRoberts [19]. The computational approach includes the NP-completenessof the decision problem of whether a bipartite graph allows a consecutiveL(2; 1)-labeling with at least six di�erent labels [24], given by Giaro in 1997.Labelings satisfying three constraints were studied by van den Heuvel,Leese and Shepherd [56] and they provide several bounds for the span (i.e.the size of the biggest label) for possibly in�nite square and triangular gridgraphs as well as for paths.In this thesis we will focus our attention on the relationship betweenthe partial covering projection and the computational complexity of thecorresponding decision problem on one side, and several models of channelassignment on the other side. For this purpose, we shall comprehensivelyinspect in detail the behavior of full and partial covering projections �rst.The thesis is organized as follows: We introduce the notation and sev-eral traditional theorems in the �rst chapter. The second chapter is devotedto the structural properties of covers as well as to simple results on thecomputational complexity of the H-cover problem which asks whether agiven graph G fully covers a �xed graph H. In the third chapter we ex-plore computational complexity of the H-partial covering problem, and thefourth chapter exhibits a relationship between partial covering projectionsand models of the channel assignment problem.



Chapter 1De�nitionsIn this chapter, we present the used notation and also provide some charac-terization theorems which are well known through the graph theory. See themonograph [50] for proofs of theorems and lemmas presented in this section.The topic is also well covered by the book [47].We use N for the set of natural numbers, and R, C resp. for the setsof real, respectively complex numbers. If n 2 N, then [n] denotes the setf1; 2; :::; ng.For p being a prime, symbol Zp stands for the ring of residues modulo p.An ordered pair of elements x; y is denoted by [x; y], while for an un-ordered pair on elements x and y we use symbols (x; y) or (y; x).If A;B are sets then A � B means the Cartesian product of A and B.The product is formally de�ned as A�B = f[x; y] : x 2 A; y 2 Bg.A mapping or a function f from the set A to a set B is a subset of A�B,such that for all x 2 A, there exists a unique y 2 B : [x; y] 2 f . We denotethe existence of a mapping by f : A ! B or by A f- B and instead[x; y] 2 f we write y = f(x) and say that y is the image of x over f .Identity on the set A is a mapping i : A ! A such that i(x) = x for allx 2 A.If f : A ! B is a function, then the set A is called the domain of f ,while the set of all elements of B that are images of some elements from Ais called the range.A mapping f : A! B is injective if, for each y 2 B, there is at most onex 2 A s.t. f(x) = y. Similarly f is a surjective mapping if for each y 2 Bthere is at least one x 2 A; f(x) = y. The inverse function f�1 : B ! A ofan injective and surjective mapping f is de�ned by the equality f�1(y) = xwhenever y = f(x). 7



DEFINITIONS 8When A0 � A, we de�ne f(A0) = fy 2 B : 9x 2 A0; y = f(x)g and,similarly, for B0 � B, we set f�1(B0) = fx 2 A : f(x) 2 B0g.The operation f � g is called the composition of mappings f : A ! Band g : B ! C and is de�ned by the equality (f � g)(x) = g(f(x)).A class C of mappings is closed under composition if, for each f; g 2 C,Range(f) � Domain(g) :, the composition f � g belongs to C too.1.1 GraphsA graph or simple graph is a pair (V;E) where V is a set of vertices andE � �V2� is a set of pairs which we call edges. For our purposes, we alwaysdeal with �nite graphs, which means that both V and E are �nite sets.Vertices are usually denoted by letters u and v and, if not otherwise stated wenumber the vertex set of the cardinality n by V = fv1; v2; :::; vng. Similarly,m denotes the cardinality of the edge set and we write E = fe1; :::; emg.If vertices u and v belong to an edge e = (u; v), we say that u and v areadjacent and write u 2 e or u 2 (u; v), e 3 u, etc.For graphs, we will use symbols G;G0;H, etc. To distinguish betweenthe vertex and edge sets of various graphs, we will use subscripts or brackets,e.g. V (G); E(G0); VH .The complement of a graphG = (V;E) is de�ned as the graph whose edgeset contains all pairs that do not form an edge in G. For the complementof a graph G, we use the symbol G and formally de�ne (V (G); E(G) =(V (G); �V (G)2 � nE(G)).A directed graph or digraph is a pair (V; ~E), where V is a �nite set ofvertices and ~E is a set of ordered pairs of V , i.e., oriented edges betweendistinct vertices. For a directed graph, we use symbols ~G;D. If ~e = [u; v]is an oriented edge, we say that ~e starts in the vertex u and ends in v andthat u is the tail or the ending vertex of ~e and v is the head or the beginningvertex of ~e.Only distinct vertices can be connected by an edge in the de�nition ofthe graph. If we allow that the same vertex appears on both positions in thepair, we call such an edge a loop. A (directed) graph which contains loopsis called a (directed) graph with loops.A multigraph is a generalization of a �nite graph where the edge set E is a�nite multiset formed from directed and undirected edges and loops (loopscan be directed too). Each edge (and loop) has assigned a �nite naturalnumber, called the multiplicity of the edge m(e), which describes how manytimes th edge e appears in E.



DEFINITIONS 9If u is a vertex of G, then the set of vertices that are adjacent to thevertex u is called the neighborhood of u and is denoted by N(u). The setN [u] = N(u) [ fug is called the closed neighborhood of u.The degree of a vertex u in a simple graph G is the number of edges thatare incident with u. Formally, deg(u) = jf(u; v) : (u; v) 2 E(G)gj. If G is agraph with loops, then each loop is counted twice in the degree of the vertex,i.e. deg(u) = jf(u; v) : (u; v) 2 E(G); u 6= vgj+ 2jf(u; u) : (u; u) 2 E(G)gj.For the maximal degree in a graph G, we use the symbol �(G).In a multigraph the degree of a vertex u is the sum of the multiplicitiesof the undirected edges incident with u, i.e.deg(u) = X(u;v)2E;u6=vm((u; v)) + 2 X(u;u)2Em((u; u))A vertex of degree 1 is called a leaf.If all vertices of G have the same degree equal to a constant d, we saythat G is a d-regular graph. A 3-regular graph is also called a cubic graph.If D is a directed (multi)graph, then the outdegree of a vertex u is thenumber of edges that start in u and the indegree is the number of edges thatend in u, where both numbers are counted with the multiplicity:outdeg(u) = X[u;v]2 ~Em([u; v]) indeg(u) = X[v;u]2 ~Em([v; u])The adjacency matrix AG of a (directed, multi-) graph G is a squarematrix of order n = jV (G)j, where the entry (AG)ij = aij is equal to thenumber of edges going from the vertex vi to vj . The matrix is symmetric forundirected (multi-) graphs and 0,1 valued for simple graphs. If the graphdoes not contain a loop, then all entries on the diagonal are equal to zero.The symbol L(G) denotes the line graph of a simple graph G and isde�ned as follows: V (L(G)) = E(G), E(L(G)) = f(e; e0) : e 6= e0e \ e0 6= ;g.The line graph shows whether a pair of edges of G shares a common vertexor not.1.1.1 Subgraphs, minorsA graph G0 is a subgraph of G if V (G0) � V (G) and E(G0) � E(G). IfE(G0) = E(G) \ �V (G0)2 �, then G0 is an induced subgraph of G. We also saythat G0 is the induced subgraph of G spanned on the vertex set V (G0).Let G be a simple graph and e 2 E. After the removing of the edge e fromG, we get the graph (G� e) = (V (G); E(G) n feg). The contraction of the



DEFINITIONS 10edge e = (u; v) results in a graphG�e with the vertex set V (G�e) = V (G)nfvgand the edge set E(G � e) = E(G) n f(v; w) : w 2 N(v)g [ f(u;w) : w 2N(v) nN(u)g.A graph G is a minor of H if G can be obtained from a subgraph of Hby the contraction of some of its edges. If G is contracted from an inducedsubgraph of H, we call it an induced minor of H.A class C of graphs is called minor closed whenever G 2 C implies thatC contains all minors of G, as well.1.1.2 Examples of graphsThe empty graph on n vertices En has the vertex set V (En) = fu1; :::ungand no edge, i.e. E(En) = ;.Vertices of an empty induced subgraph form the independent set. Thesize of maximum independent set of G is called the independence number ofG and is denoted by �(G).The path of length n � 1, is denoted by Pn, has n vertices V (Pn) =fu1; :::ung and n � 1 edges: E(Pn) = f(ui; ui+1); 1 � i < ng. We usuallysay that Pn starts in u1 and ends in un. A path in a graph G is an iso-morphic image of some Pn, i.e. a (not necessarily induced) subgraph that isisomorphic to a Pn. A walk in G is a homomorphic image of a Pn. A tour isan image of an edge-injective homomorphism of some Pn. In other words,in a path, every edge and every vertex appears only once. In a tour, somevertices may appear more times but every edge is used only once, i.e., a tourmay cross itself only in a vertex. Any edge or vertex may appear severaltimes inside a walk.The cycle Cn is formed from Pn and an edge joining vertices u1 and un.The girth of G is the length of the shortest cycle contained in the graphG as a subgraph.If a graph has a cycle on all vertices, we call the cycle (and also thegraph) Hamiltonian.The complete graph on n verticesKn has all possible edges, i.e., E(Kn) =f(ui; uj);8i 6= jg or, equivalently, Kn = En.An complete subgraph is called a clique. The clique of the maximum size(measured in the number of vertices) is called the maximum clique. The sizeof a maximum clique of a graph G is called the clique number of G, and isdenoted by !(G).The complete bipartite graph on partitions with a and b vertices Ka;b isde�ned by V (Ka;b) = fu1; :::ua; v1; :::vbg; E(Ka;b) = f(ui; vj)8i = 1; ::; a; j =1; ::; bg.



DEFINITIONS 11A tree is a connected graph that contains no cycle as a subgraph.The star graph with n rays is denoted by Sn, and has n + 1 verticesV (En) = fu0; :::ung and n edges: E(Sn) = f(u0; ui); 1 � i � ng. We alsocall u0 the center of the star.Suppose that, in the following de�nitions, (j1; ::; jk) is a k-tuple of posi-tive integers.The ower (multi)graph F (j1; ::; jk) contains one vertex of degree 2k thatis the unique intersection of k cycles of length j1; ::; jk. If ji = 1 for some i,then this cycle forms a loop on the central vertex.The banana (multi)graph B(j1; ::; jk) has two vertices of degree k con-nected by k paths of length j1; ::; jk . If at least two parameters ji; j0i are one,then the central vertices are connected by the multiple edge.The weight (multi)graphW (i; j; k) consists of two cycles (loops) of lengthj and k which are joined by a path of length i.Let k be greater or equal to three. The k-star�sh graph has k vertices ofdegree four forming a cycle of length k and k vertices of degree two such thateach pair of consecutive vertices of degree four share one common neighborof degree two.1.1.3 Graph drawingWe usually visualize a graph by a drawing of its vertices as distinct pointsin the Euclidean plane, and edges as curves (i.e. homeomorphic images ofa closed real interval) that connect adjacent vertices. We say that G is aplanar graph if there exists a planar drawing of G, i.e., a drawing wherecurves intersects only in their endpoints. The segments of the plane arecalled faces, the in�nite segment is the outerface.An outerplanar graph has a planar drawing with a Hamiltonian cycle asthe boundary of the outerface.A graph G is called a projective planar graph if there exists a cycle C as asubgraph of G which can be contracted to the cycle (u1; u2; :::; uk ; v1; :::; vk)and G � f(u1; v1); (u2; v2); :::; (uk ; vk)g has a planar drawing with C as theouterface.1.1.4 ConnectivityThe graph G is connected if, for every pair of vertices u; v, there exists apath in G which starts in u and ends in v.If G is not connected, then its maximal connected subgraphs are calledcomponents of connectivity.



DEFINITIONS 12The length of the shortest path connecting vertices u and v from thesame component is called the distance, and is denoted by dist(u; v). Notethat any shortest path is always an induced path.The greatest distance between a pair of vertices of a connected graph Gis called the diameter of G, and is indicated by diam(G).The simple graph G is vertex k-connected if, for every pair of verticesu; v, there exist at least k paths connecting u and v that are pairwise disjointon their inner vertices.The simple graph G is edge k-connected if, for every pair of vertices u; v,at least k edge disjoint paths join u to v.The maximal vertex 2-connected induced subgraphs ofG are called blocksof G.A set of vertices V 0 � V (G) is called the cutset of G if the subgraphspanned on V (G) n V (G0) has more components than G.A set of edges E0 � E(G) is called the edge cutset of G if (V (G); E0) hasmore components than G.The one-vertex cutset is called the articulation or the cutvertex, and theedge-cutset of size one is called the bridge.There are two well-known theorems that characterize the connectivity ofa graph in words of cutsets:Theorem 1.1 (Ford-Fulkerson)A connected simple graph G on n+2 vertices is k-vertex-connected if it hasno cutset of size at most k.Theorem 1.2 (Menger)A connected simple graph G on n + 1 vertices is k-edge-connected if it hasno edge cutset of size at most k.1.1.5 Morphism on graphs, coloring, factorsA mapping f : V (G) ! V (H) is called the graph homomorphism from thegraph G to the graph H if the existence of any edge (u; v) of G impliesthat the pair (f(u); f(v)) is an edge of H. The digraph homomorphism isde�ned in the same way, i.e., by considering the directed edges instead ofundirected.With each (simple graph or digraph) homomorphism f : V (G)! V (H),there is assigned a unique edge homomorphism fE : E(G) ! E(H) de�nedby fE((u; v)) = (f(u); f(v)).



DEFINITIONS 13A homomorphism G ! G is called an endomorphism. An injectiveand surjective homomorphism is called an isomorphism. An isomorphismG ! G is an automorphism. The group of automorphisms of a graph Gwith compositions is denoted by Aut(G).An automorphism which maps each vertex onto itself is called the iden-tity. The other automorphisms are called non-trivial. A rigid graph has noautomorphism except the identity.The proper vertex coloring or, simply, the coloring of a graph G usingk colors, is any homomorphism G ! Kk, i.e., a labeling of the vertex setV (G) by numbers from [k], s.t. adjacent vertices get di�erent labels. WhenG allows a coloring with k-colors, we say thatG is k-colorable. The minimumk, s.t. G is k-colorable, is called the chromatic number of G, and is denotedby �(G).When the number k is small, we prefer to use names of real colors likeblack, white, red, etc., to denote the vertex label.All vertices of a clique of a graph are colored by distinct colors under anyproper vertex coloring. Hence, the chromatic number of a graph is boundedby the size of its largest clique: �(G) � !(G). A graph G is called theperfect graph if, for each induced subgraph H � G, the chromatic numberof H is equal to the size of its largest clique.The graph G is bipartite if �(G) � 2. In particular, every tree is abipartite graph. Bipartite graphs have a good characterization:Theorem 1.3 The graph G is bipartite if an only if it doesn't contain anodd cycle as a subgraph.The cyclic k-coloring is a homomorphism G! Ck.The proper edge coloring of a graph G using k colors is a labeling ofedges of G with numbers from [k] s.t. edges which share a common vertexget di�erent labels. The minimum number of colors that are necessary forthe existence of an edge coloring of G is called the chromatic index, and weindicate it by �0(G). Observe that the chromatic index of a graph is equalto the chromatic number of its line graph: �0(G) = �(L(G)).Theorem 1.4 (Vizing)The chromatic index of any graph G is bounded by terms of its maximumdegree �(G) � �0(G) � �(G) + 1.A set of pairwise disjoint edges is called a matching. A matching thatcontains all vertices of G is called a perfect matching.



DEFINITIONS 14A perfect matching in a graph can be computed in polynomial time byEdmond's algorithm.The factor of G is a subgraph of G on the same vertex set. A k-regularfactor we call the k-factor. Thus, the perfect matching is a synonym for the1-factor.We say that a graph G is k-factorable, if it can be split into a set ofk-factors with pairwise disjoint edge sets.It follows that a 1-factorable graph is regular and its chromatic index isequal to the degree of an arbitrary vertex.The following application of the K�onig{Hall marriage theorem showsthat all bipartite regular graphs are easily decomposable into a set of perfectmatchings.Theorem 1.5 All bipartite regular graphs are 1-factorable.Moreover, the theorem implies that all bipartite graphs have the chro-matic index equal to the maximal degree, and that an edge coloring using�(G) colors can be found in polynomial time.The following theorems show that any 2k-regular graph can be easilydecomposed into 2-factors or k-factors, as well.Theorem 1.6 (Petersen)Every 2k-regular graph is 2-factorable, and the k disjoint 2-factors can befound in polynomial time.Theorem 1.7 Each 2k-regular graph having an even number of edges ineach component can be split into two disjoint k-factors in polynomial time.1.1.6 Covers, partial coversLet us denote the maximum star in G with the vertex u as the center bySG(u), i.e., the subgraph of G on N [u] induced by the edges incident withu. If G andH are simple graphs, then a homomorphism f : G! H is calleda local isomorphism or a covering projection of H by G, if the mapping frestricted to any SG(u) is an isomorphism to SH(f(u)).If the mapping f in the above de�nition is not isomorphic but onlyinjective on SH(f(u)), we call the homomorphism f the partial coveringprojection.If any (partial) covering projection G ! H exists, we also say that G(partially) covers H or that G is a (partial) cover of H.



DEFINITIONS 15For the purpose of this thesis, we need a more precise de�nition of coversand partial covers, since we will deal also with colored multigraphs.De�nition Let G and H be multigraphs where vertex and edge sets are splitinto disjoint classes (colors) V (G) = VG;1 _[::: _[VG;j, E(G) = EG;1 _[::: _[EG;k,~E(G) = ~EG;1 _[::: _[ ~EG;l (and similarly for H).A mapping f : (V (G) [ E(G) [ ~E(G)) ! (V (H) [ E(H) [ ~E(H)) iscalled the covering projection on multigraphs, if the following conditions aresatis�ed:1. 8u 2 VG;i : f(u) 2 VH;i,2. 8(u; v) 2 EG;i : f((u; v)) 2 EH;i ^ f((u; v)) = (f(u); f(v)),3. 8[u; v] 2 ~EG;i : f([u; v]) 2 ~EH;i ^ f([u; v]) = [f(u); f(v)],4. 8(u; v); (u;w) 2 E(G) ^ (u; v) 6= (u;w) : f((u; v)) 6= f((u;w)),5. 8[u; v]; [u;w] 2 ~E(G) ^ [u; v] 6= [u;w] : f([u; v]) 6= f([u;w]),6. 8[v; u]; [w; u] 2 ~E(G) ^ [v; u] 6= [w; u] : f([v; u]) 6= f([w; u]),7. 8u 2 V (G) : degG(u) = degH(f(u)),8. 8u 2 V (G) : outdegG(u) = outdegH (f(u)), and9. 8u 2 V (G) : indegG(u) = indegH (f(u)).If f satis�es only the �rst six conditions, then it is called the partial coveringprojection on multigraphs.Note that the variables v and w in items 4,5, and 6 may refer to thesame vertex. In addition, one or both of them can be equal to u when u isincident with a loop.See Fig. 1.1 for an example of a covering projection G ! H. Variousshapes of vertices and edges correspond to the di�erent color classes. Thecovering projection is indicated by numbers on vertices and edges.1.2 Computational ComplexityIn this section, we outline several basic de�nitions from complexity theory.For a more detailed description, see the monograph [21].In the thesis we will describe all algorithms as a sequence of steps writtenin the natural language or we use algol-like structures. However, we suppose
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Figure 1.1: An example of a covering projection G! Hthat our algorithm will be executed by a Turing machine with the programembedded into the transition function.An input instance is an object on which the computation is performed.Size of an input instance is a number of symbols (or bits) written on theinput tape, that describes the input instance.The running time is the number of steps needed for processing the al-gorithm. It is expressed as a function of the size of the input instance.For easier expression of the running time of an algorithm, we use theO-notation. This helps us to concentrate to the most important factor thata�ects the running time. We describe the running time function f as O(g)if there exist constants c and n0, such that 8n > n0 : f(n) < cg(n).For example, if the running time of an algorithm is bounded by a poly-nomial of degree k, we write that it runs in time O(nk).Objects we deal with are graphs and are represented by a list of verticesand adjacent edges. For simplicity, we suppose that a constant space issu�cient to describe the vertex and edge labels (or a logarithmic factorappears both at the size of the input instance and also in the running time



DEFINITIONS 17function). Typical input size parameters are the number of vertices n andthe number of edges m.Our representation allows us to test adjacency of a pair of vertices in theconstant time O(1), process all vertices or neighbors of a �xed vertex in alinear time O(n) and process all edges in O(m) time.A problem is polynomially solvable if there exists a Turing machine which,for any input instance written on the input tape, writes a correct outputinstance (solution) and stops in the time which is bounded by a polynomialin the size of the input instance. A Turing machine answers a decisionproblem if it accepts or rejects the input.The class of polynomially solvable problems is denoted by P.There exists a wide range of graph-oriented problems that are polyno-mially solvable, for example:� Is G planar?� Is G bipartite?� Does G contain a perfect matching?� What is the size of a maximum matching?� Does G contain a C5 as an induced subgraph?� What is the chromatic number of a perfect graph G?A problem R is polynomially reducible to a problem S if there existsa Turing machine running in a polynomial time which converts any inputinstance iR to an input instance iS and any output instance oS to an outputinstance oR, such that the output instance oR is a correct solution for iR ifand only if the solution oS is correct for iSIf two problems are polynomially reducible to each other, we say thatthey are polynomially equivalent.For example, the searching for a k-factor can be reduced to the searchingfor a perfect matching by the following reduction:Theorem 1.8 Searching for a perfect matching and searching for a k-factorsare polynomially equivalent problems.Proof: One reduction is trivial since every perfect matching is also a 1-factor.On the other direction, perform the following construction of the graphG0 in O(n + m) steps: Split each vertex u into d = deg(u) independent
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deg(u) = d Kd;d�k

12
du

Figure 1.2: Reduction of k-factor to perfect matchingvertices u1; :::; ud, s.t. each edge is incident with exactly one vertex ui.Then add d � k extra new vertices and connect them to vertices u1; :::; ud.by the graph Kd�k;d, where vertices u1; :::; ud form one partition.Every perfect matching inG0 uses exactly d�k edges inside each completesubgraph Kd�k;d. Therefore, exactly k edges are connecting every Kd�k;dwith the rest of the graph G0, and the corresponding edges form a k-factorin G.The graph G0 contains a perfect matching if and only if the graph G hasa k-factor, since any k edges leaving Kd�k;d can be completed to a perfectmatching inside Kd�k;d. Hence, any matching of G0 that selects k verticesin each Kd�k;d can be extended to a perfect matching of the entire graphG0. �The class of problems which can be veri�ed in polynomial time is denotedby NP. Veri�ed means that there exists a Turing machine that reads theinput instance and proof of the output instance and decides whether thesolution is correct to the input or not.Class P is trivially a subclass of NPbut, at the moment, there is no proofof whether these classes are equivalent or whether P is strictly smaller thanNP. Throughout the thesis we use the commonly accepted assumption thatP6=NP. However, this implies the existence of a dense distribution of classesin between P and NP [41].Several problems are unknown to belong to NP, e.g. \What is the chro-matic number of G?", since there is no known polynomial veri�er which, forthe output �(G) = k, proves that there is no coloring of G using at mostk � 1 colors.The class of NP-complete problems (class NPc) is a subset of NP s.t.



DEFINITIONS 19each problem from NP is polynomially reducible to an arbitrary problemfrom NPc. The importance of NP-complete problems is derived from thefact that the existence of a polynomial algorithm for a single NP-completeproblem proves the equality P=NP.There are many famous graph related NP-complete problems, e.g.:� Does a graph G contain a Hamiltonian cycle?� Is a graph G k-colorable?� Does there exist a homomorphism from G to C5?In this thesis, we will often show a reduction to a H-coloring problem.Problem: H-coloringInput: A graph GQuestion: Does there exists a homomorphism from G to H?The computational complexity of the class of H-coloring problems wasfully characterized in [28].Theorem 1.9 (Hell-Ne�set�ril)The H-coloring problem is NP-complete if and only if H contains an oddcycle, and is polynomially solvable otherwise.In particular, the classical k-coloring problem is equivalent to the H-coloring problem when selecting H = Kk.Another problem that is frequently used in this thesis asks for a speci�cbicoloring of a given regular graph:Problem: BW (k; j)Input: A (k + j)-regular graph GQuestion: Does there exists a coloring of V (G) with black and white colorss.t. each vertex has adjacent exactly k vertices of the same color?When k or l is equal to zero, the problem is trivially satis�ed, but allother cases are NP-complete: The BW (2; 1) problem was proven to be NP-complete in [34, 35]. For the NP-completeness of the case of an even k � 2and an arbitrary l � 1, see [37]. The remaining case of an odd k can betreated similarly [17].



Chapter 2Covers2.1 Structural behavior of coversand partial covers2.1.1 IntroductionWe introduce two observations for the better description of the behavior ofa covering projection.We already expressed that the covering projection f : G ! H is ahomomorphism whose restriction to N [u] of an arbitrary vertex u 2 V (G)is an isomorphism to N [f(u)].We also de�ned the covering projection for multigraphs, which | rewrit-ten to the case of simple graphs | satis�es the following conditions:1. f is a homomorphism, i.e. 8(u; v) 2 E(G) : (f(u); f(v)) 2 E(H),2. f is locally injective, i.e. 8u; v 2 V (G); dist(u; v) = 2 : f(u) 6= f(v),and3. f is degree-preserving, i.e. 8u 2 V (G) : degG(u) = degH (f(u)).It is easy to check that the local injectivity (no pair of edges can bemerged into a single edge) and degree preserving (the target doesn't haveincident more edges than the source) are necessary and su�cient conditionsfor the local isomorphism and, therefore, the above de�nitions are equivalent.Observe that every isomorphism G! H is a covering projection.The set of all covering projections is closed under a composition. Inother words, if f : G ! H and g : H ! F are covering projections, thenf � g is a covering projection from G to F . More especially any covering20



COVERS 21projection f : G ! H composed with a nontrivial automorphism of H isanother covering projection from the graph G to H.In the literature, a covering projection f : G ! H is sometimes men-tioned with the adjective k-fold. This means that the number of vertices thatmap onto a �xed vertex u is constant, i.e., there exists a positive integer k,such that jf�1(u)j = k for all vertices u 2 V (H).Observation 2.1 If the graph H is connected, every covering projectioninto H is k-fold for some k.Proof: Suppose that k is size of f�1(u) for a particular vertex u of H,and that e = (u; v) is an arbitrary edge incident with u. Since the coveringprojection f is a local isomorphism, it means that jf�1(e)j = k, and theconstant is the same for both ends of e, i.e. jf�1(u)j = jf�1(v)j.Due to the connectedness of the graph H, we get the equality for allvertices u 2 V (H). �The observation immediately implies that wheneverG covers a connectedgraph H, then the size of the vertex set of G is a multiple of the number ofvertices in H. In particular, every covering projection G! G of a connectedgraph G is an automorphisms of G.For disconnected graphs, this multiplicity principle holds between pairsof blocks of G and H, however, the constants may vary in di�erent cases.In the construction of graphs of special properties, we will use the fol-lowing extension lemma:Lemma 2.2 If a graph G is a partial cover of a graph H, then there existsa graph G0 � G that fully covers H.Proof: Denote by g the partial covering projection G! H.Enlarge the vertex set V (G) by introducing extra new vertices into theset V (G0) and extend the mapping g into V (G0) such that 8v; v0 2 V (H) :jg�1(v)j = jg�1(v0)j.For each edge e = (v; v0) of H, �nd sets A = g�1(v); B = g�1(v0) and,if necessary, insert into G0 new edges, s.t. the sets A and B are connectedby a perfect matching. The mapping g is locally isomorphic. Hence, G0 is afull cover of H. �2.1.2 Degree re�nementAny full covering projection maintains the degree of a vertex. Thereforeonly vertices of the same degree might be mapped onto the same target.



COVERS 22Looking on the neighborhood of a vertex, we extend our observation thatalso all neighbors of our candidates should be matched into pairs of the samedegree. In this section, we construct a partition of the vertex set into classesin a way that generalizes this property of a full covering projection.De�nition The degree re�nement of a graph G is a partition of the vertexset V (G) into the minimum number of disjoint sets R1; :::; Rk, such that:� vertices in the same set have the same degree,� if u and v belong to the same set then, for each Ri, the number ofneighbors of u in Ri is equal to the number of neighbors of v in Ri.Note that the degree re�nement of a regular graph consists of only asingle set containing all vertices of the graph.The degree re�nement can be computed in O(n3) time by the followingprocedure:1. Split vertices into sets R01; :::; R0k0 by their degree, and order sets in thedescending degree.2. For each vertex, compute the degree vector whose i-th entry is thenumber of neighbors in the set R0i.3. Stop if all vertices have the same degree vector in each set.4. Otherwise re�ne the partition, s.t. sets contain vertices with the samevector. Then re�ne the set order by the lexicographic ordering of thecorresponding vectors and continue with step 2.The above algorithm gives us also the unique ordering of sets of thedegree re�nement. The square matrix whose rows are degree vectors of the�nal re�nement is called the degree re�nement matrix M .Observe that the degree re�nement matrix is �lled by non-negative in-tegers, and is weakly symmetric with respect to zero. If (M)ij = 0, then(M)ji = 0.The following theorems glue together the shape of the degree re�nementmatrix and the existence of a full covering projection.Theorem 2.3 [2, 44]If a graph G covers a connected graph H, then their degree re�nement ma-trices are equal.



COVERS 23Theorem 2.4 [16, 17]If connected graphs G and H have the same degree re�nement matrix, thenany partial covering projection from G to H is also a full covering projection.Proof: (Sketch) Perform the degree re�nement procedure simultaneouslyon graphs G and H, and sort the sets RG;i and RH;i lexicographically. Puttx(u) = i for each u 2 Rx;i where x stands for G or H respectively. Notethat vertices in the corresponding sets in G and H have the same degreevectors during the execution of the degree re�nement procedure.Now, suppose that a partial covering projection f : G ! H exists. Weshow that, for any vertex u 2 V (G), tG(u) = tH(f(u)). Hence f is degree-preserving, i.e., a full covering projection.By way of contradiction suppose tG(u) < tH(f(u)). Then the vertices uand f(u) have the same degree and belong to the corresponding classes R0G;iand R0H;i of the initial degree distribution.Suppose that the degree vectors of u and f(u) became di�erent duringthe k-th round of the degree re�nement algorithm. This implies that, amongneighbors of u, there exists a vertex u0, s.t. tG(u0) < tH(f(u0)) and u0 getsa di�erent degree vector from f(u0) earlier than the vertex u. We repeatthis argument for u0 to get u00, u000 etc. and, after at most k iterations, weobtain a vertex u(l) satisfying u(l) 2 R0G;i, while f(u(l)) 2 R0H;i0 and i < i0, acontradiction.To exclude the opposite inequality, suppose that there exists a vertexu satisfying tG(u) > tH(f(u)). Select a vertex v 2 RG;1 arbitrarily, andnote that tG(v) = tH(f(v)). Since the graph G is connected, there exists apath from u to v and on the path there is a edge (v0; u0) such that tG(v0) =tH(f(v0)) but tG(u0) > tH(f(u0)). This yields the existence of a neighbor u00of v0, s.t. tG(u00) < tH(f(u00)), what is impossible. �The last theorem implies the result of Ne�set�ril and Pultr [53] claimingthat every partial cover G! G of a connected graph G is its automorphism.Call a graph ground if the degree re�nement matrix is equal to its adja-cency matrix.Ground graphs have exactly one vertex in each class of degree re�nement.They may cover only itself, since there is no possibility to map two vertices onthe same target. On the other hand, it is easy to test whether an input graphcovers a ground graph, since any covering projection is uniquely identi�edby the classes of degree re�nement.This approach was extended in [38], where an polynomial algorithm wasgiven which tested the existence of a full covering projection for simple



COVERS 24graphs which have at most two vertices in each class of the degree re�nement.The algorithm used a reduction to the 2-SAT problem.2.1.3 Marked productsLet G = (V;E1; :::; Ek) be a k-regular k-edge-chromatic graph, where setsE1; :::; Ek are color classes of an proper edge coloring. In this section, wecall this structure marked graph. For a given k, let the classMk contains allmarked graphs, where the edge-coloring is represented by the color classes.Note that each Ei is a perfect matching in G, and that each ordering ofcolor classes represents a di�erent object in Mk.For two marked graphs G = (V;E1; :::; Ek); G0 = (V 0; E01; :::; E0k) 2 Mk,we de�ne the product G�G0 = (V � V 0; E1 �E01; :::; Ek �E0k).It is obvious that projections � : G � G0 ! G and �0 : G � G0 ! G0de�ned as �((u; v)) = u; �0((u; v)) = v are covers, since they are locallyisomorphic. Each vertex of G�G0 has exactly k adjacent edges where eachof them belong to a di�erent color class, and the same holds the graphs Gand G0.The product G � G0 satis�es the categorical property with respect tocovers.Lemma 2.5 Whenever there is a marked graph ~G that covers both G andG0, and both covering projections f; f 0 maintain the color classes, i.e., f( ~Ei) =Ei and f 0( ~Ei) = E0i, then there exists an unique covering projection ~f : ~G!G � G0, such that ~f commutes with projections �; �0, i.e., f = ~f � � andf 0 = ~f � �0.Proof: The projection ~f is uniquely de�ned as ~f(u) = (f(u); f 0(u)). Itfollows directly from the de�nition of projections �; �0, that ~f commuteswith projection. We have to check that ~f is a covering projection. If an edge(u; v) belongs to the class ~Ei, then (f(u); f(v)) 2 Ei and (f 0(u); f 0(v)) 2 E0i.Therefore, ( ~f(u); ~f(v)) 2 (Ei � E0i), and ~f is locally injective and respectscolor classes. But both ~B and G�G0 are fromMk and, hence, are k-regulargraphs, so ~f is a local isomorphism. �We extend the class of marked k-regular graphs to the class M0k of allk-edge chromatic graphs to deal with general graphs, as well. Elements ofM0k are graphs together with the color classes G = (V;E1; :::; Ek). Now,each color class Ei is a matching in G.For marked graphs G;G0 2M0k, let the product G�G0 and projections�; �0 be de�ned by the same formula as for k-regular marked graphs: G �



COVERS 25G0 = (V � V 0; E1 �E01; :::; Ek �E0k), �((u; v)) = u, �0((u; v)) = v.We get a similar result as in the previous paragraph. The only di�erenceis that all projections we deal with in M0k are partial covers.Lemma 2.6 Suppose G;G0; ~G 2 M0k, the graph ~G partially covers both Gand G0 with respect to the color classes, and g; g0 are desired partial coveringprojections. Then there exist a unique partial covering projection ~g : ~G !G�G0 s.t. g = ~g � � and g0 = ~g � �0.Proof: Set ~g(u) = (g(u); g0(u)). Then ~g commutes, and and edge (u; v) 2 ~Eihas its mirrors both in Ei and E0i, and in (Ei � E0i) too. Thus, ~g is locallyinjective, since all color classes are matchings. In other words, each colorclass locally contains at most one edge and the product of correspondingcolor classes has locally at most one edge, as well. �One cannot expect that Lemma 2.6 will hold also for full covers of generalgraphs and on the same vertex set V � V 0, because whenever there are twovertices u 2 G;u0 2 G0 of di�erent degree, then the vertex (u; u0) has thesame degree as u and u0, which is impossible. But if more structure isachieved, a particular component of G�G0 covers fully both G and G0.Call a graph G = (V1; :::; Vl; E1; :::; Ek) well marked with respect to de-gree re�nement V1; :::; Vk if Ei are classes of edge coloring and each Ei is aperfect matching either inside one class Vk or between two classes Vk0 andVk00 .De�nition Let G = (V1; :::; Vl; E1; :::; Ek); G0 = (V 01 ; :::; V 0l ; E01; :::; E0k) be twowell marked graphs with the same degree re�nement, let classes Vi and V 0icorrespond to each other in the re�nement, and let Ej acts on partitionsin G with the same indices as E0j in G0. Then, we de�ne G 
 G0 = (V1 �V 01 ; :::; Vl � V 0l ; E1 � E01; :::; Ek �E0k) as a product of well-marked graphs Gand G0.Theorem 2.7 If G;G0 are well marked graphs and ~G fully covers both Gand G0 by g and g0 with respect to the edge color classes, then there is aunique full covering projection ~G! G
G0, satisfying g = ~g � �; g0 = ~g � �0.Proof: It follows from the de�nition of well marked graphs, that if u; v 2 Viand u0 2 V 0i , then the neighborhoods of u; v, and u0 are mutually isomorphicwith respect to the color classes. Therefore, each of them is also isomorphicto the neighborhood of (u; u0) in G 
 G0, because all edges are achieved:If (u; v) is an edge between Vi and Vi0 and belongs to Ej , then an edge



COVERS 26(w; x) 2 E0j connects a vertex (say x) from V 0i with a vertex from V 0i0 . Then((u; x); (v; w)) is edge of G
G0, and belongs to the color class Ej �E0j.Hence, ~g commutes, and �; �0 are full covers, too. It is necessary tocheck that ~g is a full covering projection. Due to Lemma 2.6, the mappingg is a partial covering projection. Moreover, g maintains the degree of everyvertex. Hence, g is a full covering projection. �It follows directly from the de�nition that all well marked graphs havea symmetric matrix of degree re�nement.2.1.4 Common coversAngluin in 1980 explored in her paper [2] the power of distributed computingin a network of processors and de�ned the class DAA as the class of sets ofgraphs that might be recognized by a deterministic distributed computationwith a uniform initial and �nal con�guration.She de�ned the universal cover U(G) of a simple graph G as an possiblyin�nite tree with vertex set consisting of all walks started in a �xed vertexv0 that do not traverse the same edge in two consecutive steps. Two walksw;w0 are adjacent if w0 is a one edge extension of w or vice versa.The universal cover U(G) is an in�nite structure whenever G has a cycle.For an easier and practical recognition of graphs, she proved that U(G) =U(H) if and only if G nd H have the same degree re�nement matrix.In the same paper, she proved that the classes CG = fH : U(H) =U(G)g belong to DAA. In other words, for each G there exists a �niteset of processor types that, when it is assigned to vertices of any H, itcomputes whether H has the same degree re�nement as G or not. From apractical point of view, it may be implemented as a hardware test whether acertain network of processors is feasible for the processing of an distributedalgorithm that assigns to the processors at vertices from the same class ofdegree re�nement the same task.It is proved there that two graphs G;G0 are indistinguishable by DDAcomputations if there exists a �nite graph H called the �nite common coverthat covers both G and G0.To establish the full characterization of whether two graphs are recog-nized by a DAA computation, she conjectured that G and H have the samedegree re�nement matrix if and only if G and H have a �nite common cover.This conjecture is closely connected to the categorical product of twomarked k-regular graphs G�G0, since we already proved that this productis also a common cover.



COVERS 27Unfortunately, the structure of several k-regular graphs G cannot beextended to a marked graph, since these graphs are not k-edge colorable.For example, the Petersen graph is cubic, but its chromatic index is equalto four.The following technique was used to prove the Angluin's conjecture fora restricted class of graphs in [3].Observe the graph ~G = G�K2, called the Kronecker double cover [2] ofG. Since G is k-regular, and K2 is bipartite, ~G is bipartite k-regular, anddue to Theorem 1.5, it is k-edge colorable. It follows that ~G can be marked.In addition, ~G fully covers G by the canonical projection �((u; v)) = u.Corollary 2.8 For each k-regular graphs G;G0 there exists a graph ~G thatfully covers each of them.Proof: If G is not k-edge chromatic, use ~G instead of G and produce ~G�G0.Then ~G�G0 covers ~G that covers G. Similarly for G0. �For a general graph G, there is a question of whether there exists agraph ~G that can be well-marked and that fully covers G. The question ispositively answered for graphs whose degree re�nement matrix is symmetric.The graph ~G = G �K2 is regular and bipartite inside each Vk �K2. Thebipartite graphs between Vk0 and Vk00 are regular due to the symmetry ofthe degree re�nement matrix. This property remains after multiplication byK2.The conjecture was proven by Leighton two years later in 1982 [44]:Theorem 2.9 Let G;G0 be two �nite connected simple graphs. Then thefollowing statements are equivalent:� G and G0 share a common �nite cover;� G and G0 have the same universal cover;� G and G0 share a common (possibly in�nite) cover; and� G and G0 have the same degree re�nement matrix.Proof: (Sketch) Denote by Gij the subgraph of G induced by edges con-necting sets Ri and Rj. Suppose that for all i; j, we are able to constructgraphs Hij that cover Gij as well as G0ij. By the induction hypothesis, sup-pose that we are able to construct a common cover of graphs Hij that coversboth (GnE(Gij)) and (G0nE(G0ij)) for some (M)ij 6= 0. Then, we use multi-ple copies of Hij and Hij until sets Ri(Hij) and Ri(Hij) have the same size.
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(u; v; 1) (p; r; 1)(q; s; 1)(u; v; 2) (p; s; 2)(q; r; 3)� =

Figure 2.1: Detail of Leighton's construction(Immediately, the equality holds also for sets Rj .) Gluing together verticesu 2 Ri(Hij) and v 2 Ri(Hij) that have the same image in G and G0 (and inthe same way, for index j), we get a common cover of both G and G0.Now we show a construction of graphs Hij. Due to Corollary 2.8, wesuppose that i 6= j. For each vertex u 2 V (Gij), �x an injective labeling ofits incident edges by numbers from [deg(u)]. We use the symbol c(u; e) forthe label of edge e incident to vertex u. We perform the same procedure forthe graph G0ij.Let a = (M)ij ; b = (M)ji, and putV (Hij) = (V (Ri(G)� V (Ri(G0)� [a]) [ (V (Rj(G)� V (Rj(G0)� [b]).Two vertices (u; u0; k) and (v; v0; l) are adjacent if and only if(u; v) 2 E(G); (u0; v0) 2 E(G0);k � c(u; (u; v)) � c0(u0; (u0; v0)) (mod a), andl � c(v; (u; v)) � c0(v0; (u0; v0)) (mod b):Projections f : (u; u0; k)! u and f 0 : (u; u0; k)! u0 are covering projec-tions, which prove that Hij is a common cover of both G and G0. �See Fig. 2.1 for an example of the product of two vertices and theiradjacent edges.Call the graph constructed by the above theorem Leighton cover.Theorem 2.9 directly implies the following corollary [2]:Corollary 2.10 If graphs G and G0 cover the same connected graph F , thenthey have a �nite common cover.2.1.5 Colored directed multigraphsLemma 2.11 Any tree T fully covers only an isomorphic tree.



COVERS 29Proof: If the covering projection maps two vertices u and u0 of T on thesame vertex in H, then the path joining u and u0 is mapped onto a cycle inH. Going around this cycle in H, we get a sequence of vertices in T , whichform a cycle or an in�nite path. Both cases are impossible since T is a �nitetree.We proved that the covering projection is injective. Any tree is also con-nected graph, and there exists only 1-fold cover. Hence, it is an isomorphismby Observation 2.1. �If a general graph contains a cutvertex whose removal gives a tree as aone block, then the mirror of that cutvertex has the same property underany covering projection, and the trees are isomorphic. If more trees appearby the removal of the vertex, then they should be arranged into isomorphicpairs.This observation gives us an idea of how to concentrate our attentiononly to graphs without leaves: If there is a leaf in the graph, remove it andmaintain a code that the leaf was removed together with the code of theleaf. This gives us a graph without leaves, where some vertices are labeled.For simplicity, we will view di�erent labels as di�erent vertex colors.At the second step, we remove all vertices of degree two from the graph:Consider a path connecting two vertices of degree at least three, whose allinternal vertices have degree two. We replace the path by a single edgeand maintain the code of the number, order and colors of vertices of thereplaced path. Due to a similar reason, we call the code of the path theedge color. Since the removed path is not necessarily symmetric, we assignan orientation to the edge. Note, that we can uniquely reconstruct theoriginal path from the color and the orientation of the edge.It is possible, that the path replacement create a multigraph with loopsand multiple edges.Now, we are able to represent each graph by a directed (edge and ver-tex) colored multigraph with minimum degree 3, and with the followingproperty: If there exists a full covering projection between two directed col-ored multigraphs (due to the de�nition the covering projection maintainsedge direction and both edge and vertex colors), then there exists also a fullcovering projection between the transformed multigraphs [37].In the paragraph 2.1.2, we constructed a degree re�nement and the ma-trix of degree re�nement as a tool, that allows us to partially determine theimage of a vertex under a covering projection between simple graphs. Asimilar procedure can be performed for a colored directed multigraph G:First �x an ordering of all edge and vertex colors | this is necessary



COVERS 30for the unique de�nition of the degree re�nement matrix. Suppose that theundirected edges are colored by 1; ::; p, while directed edges by 10; :::; q0.Denote by ~d(u) the degree vector having the following structure:~d(u) = (cv(u); deg1(u); ::; degp(u); ind10(u); outd10(u); :::; indq0 (u); outdq0(u)),where cv(u) is the vertex color of u, degi(u) is the number of edges of color iincident to u, and the symbols indi0(u) and outdi0(u) have a similar meaning| the number of oriented edges of color i0 incident to u.The �rst step of the degree re�nement procedure consists of splittingV (G) into sets R0i, such that vertices in the same set have the same degreevector. Sort sets by the lexicographical order of their representatives.Then re�ne the partition, as shown in paragraph 2.1.2 until all verticesfrom the same set have the same number in neighbors in each set Ri.Note that having the degree partition, we can distinguish between edgesof the same color, that connects di�erent pairs of blocks. Therefore, wemay assume that without lost of generality, the edge colors used inside asingle block or colors of edges that connect a pair of blocks are unique, andthat they are not used elsewhere in the multigraph G. For this purpose, weintroduce extra new colors to distinguish these edge sets.Using the same argument, we separate oriented edges leaving a blockfrom the incoming edges. Hence, we assume that the oriented edges appearonly inside blocks of the degree re�nement.2.2 Computational complexity ofthe H-COVER problemThe computational point of view states a question of whether for givengraphs G and H there exists a (partial) covering projection from G to H. Ifboth graphs are part of the input, then the problem is trivially NP-complete.By selecting H = K4 we can test the existence of a proper 4-coloring of acubic graph G, such that on the closed neighborhood of every vertex, allfour colors are used [35].We use a similar approach, as is used for the testing the existence of agraph homomorphism (i.e., the H-coloring problem) and de�ne a class ofH-cover problems, where each problem corresponds to a speci�c graph H:Problem: H-coverInput: A graph GQuestion: Does there exists a covering projection mapping the graph G ontothe graph H?



COVERS 31The same technique is used for partial covers:Problem: H-partial coverInput: A graph GQuestion: Does there exists a partial covering projection from G to H?Without lost of generality, we suppose that the input graph G is con-nected, since each block of connectivity of G have to (partially) cover thegraph H, if and only if the entire graph G covers H.2.2.1 Complexity of covering sparse graphsBoth H-cover and H-partial cover problems are polynomially solvable fortrees, even if H became a part of the input. Then, the H-cover problem isequivalent to the tree-isomorphism problem. If the tree H is �xed, then thetree isomorphism testing is solvable in constant time.The H-partial cover problem is solvable in constant time too, becausewe can ask whether an input graph G is a subtree of H. If H is �xed, thenit has only �nitely many subtrees, and we can try each case separately. Onthe other hand, quite sophisticated algorithms running in polynomial timeexist for testing subtree isomorphism, see [21], problem GT48 or [54].In addition, both problems are solvable in polynomial time for graphs Hthat have only one cycle. If a connected graph G covers unicyclic H, thenthe graph G has exactly one cycle, and its length is multiple of girth(H).We denote the multiplicity by k, and build an connected k-fold cover of H.Since H has one cycle, this k-fold cover Hk is uniquely determined. Finally,the test, whether two unicyclic graphs are isomorphic, can by done by aslight modi�cation of the tree isomorphism algorithm:1. Compare jV (G)j and �(G) with jV (Hk)j and �(Hk). If there aredi�erent numbers, the graphs cannot be isomorphic.2. Add into G two disjoint copies of the graph S�(G)+1. Now, G hasthree components. Denote these two stars by S and S03. Select an edge e = (u; u0) 2 E(G) that lies on the cycle and removeit from G. Unify u with the centre of S, and u0 with the centre of S0.Denote the resulting tree by TG.4. Perform steps 2 and 3 on the graph Hk, and test for the tree isomor-phism between TG and THk . If the test succeeds, claim that G and Hkare isomorphic.



COVERS 325. If the test fails, repeat step 4 at most girth(H) times, and each timeselect one of the girth(H) consecutive edges along the cycle in Hk. Ifall these tests fail, then G is not isomorphic to Hk.To check that the algorithm is correct, observe the following facts.� Since u and u0 have maximal degree, they must be mapped onto thecorresponding vertices in Hk, and after the reconstruction of the orig-inal graph they will be connected by an edge on both sides.� We have checked all possible non-isomorphic splitting of the graph Hkinto a tree, and if G was isomorphic to Hk, at least one of these treeswas isomorphic to TG.The H-partial cover problem for unicyclic graphs can be solved by asimilar procedure. There are only two di�erences:1. If G contains a cycle, we prepare a k-fold cover Hk as above, otherwisewe select k, such that girth(Hk) � diam(G).2. Test for the subtree isomorphism, instead of the tree isomorphism.Note that both methods use the (sub)tree-isomorphism routines in theway, that graphs TG and THk form the input instance.Corollary 2.12 The H-cover and H-partial cover problems are solvable inpolynomial time for every graph H with at most one cycle in each componentof connectivity.We will see in the following section that two cycles in H may cause thatthe H-cover problem become NP-complete.2.2.2 Results reviewWe already claimed in Theorem 2.3 that, if any covering projection G !H exist, then G and H share the same degree re�nement matrix. Thecomputation of the degree re�nement matrix can be done in polynomialtime, hence we get the following corollary.Corollary 2.13 The H-cover problem is solvable in polynomial time forground graphs H.



COVERS 33The fact, that the adjacency and degree re�nement matrices are equal,is equivalent to the formulation, that every block of degree re�nement of Hcontains only one vertex.The H-cover problem �rst appeared in [3], and even in this pioneerpaper, examples of both polynomially solvable and NP-complete instanceswere shown.The last corollary was extended by Kratochv��l, Proskurowski and Telle[39] for graphs with more complicated cycle structure than unicyclic graphs.We �rst mention the case of simple graphs.Theorem 2.14 If all sets of the degree partition of a simple graph H haveat most two vertices, then the H-cover problem is solvable in polynomialtime.Proof: (Sketch) Let G be the input graph. Ask, whether G has the samedegree re�nement matrix, and continue, only if the question is answeredpositively.If any covering projection f : G! H exists, then all vertices of G, thatcorresponds to one-vertex sets in H, have uniquely determined image underf . Therefore, the \hard" task is to de�ne the mapping f on vertices thatcorresponds to the two vertex-sets Bi(H) = fai; big.For each vertex u 2 Bi(G), introduce a boolean variable xu, which willbe assigned the truth value, when u is mapped onto ai, and xu is set to false,whenever f(u) = bi.We construct a 2-SAT formula �, such that each its satisfying assignmentcorresponds to a proper covering G f- H.� If two distinct vertices u and v belongs to the same block Bi(G) andif they are adjacent or have a common neighbor, then let � contains(xu _ xv) ^ (:xu _ :xv) as a subformula.� If (ai; aj); (bi; bj) are the only edges between Bi(H) and Bj(H), thenlet � include conjunction (xu _:xv)^ (:xu _ xv) as a subformula, forall pairs of vertices u 2 Bi(G); v 2 Bj(G).� If (ai; bj); (bi; aj) are the only edges that connects Bi(H) and Bj(H),then let � contains (xu_xv)^(:xu_:xv), for all u 2 Bi(G); v 2 Bj(G).These three types of clauses in � force, that whenever a satisfying as-signment for � exists, then the corresponding covering projection is locallyinjective. In the other direction, every covering projection f : G ! H canbe transformed to a satisfying assignment of �.



COVERS 34We proved that for all graphs H, which blocks of degree partition haveat most two vertices, the H-cover problem is polynomially reducible to the2-SAT problem, which is known to be polynomially solvable. �Note, that trees or unicyclic graphs may have more than two vertices ina block of degree partition and, therefore, none of the above theorems givea complete characterization of the polynomially solvable cases.The paper [39] includes the complete catalogue of H-cover instances ofall simple graphs H with at most six vertices, where 36 cases of 208 are NP-complete, and a non-trivial polynomial reduction is shown for about 100graphs.In the sequel paper [37], Kratochv��l et al. introduced the colored directedmultigraphs as a structure, that exclude vertices of degree at most two, andthey gave a complete characterization for cdm-graphs with at most twovertices.The proof technique of Theorem 2.14 was extended in [36] to the case ofcolored directed multigraphs as follows:Proposition 2.15 The H-cover is a polynomially solvable problem if H is acolored directed multigraph, whose classes of degree re�nement (with respectto vertex and edge color) have 1, 2 or 4 vertices, and further two conditionsare satis�ed:� Each block of degree re�nement restricted to the edges of the same coloris one the following type:{ a disjoint union of (directed) loops or (directed) multiple edges,{ the graph depicted in Fig. 2.2 or two disjoint copies of this graph,{ the cycle C4,{ C4 whose all edges are replaced by a multiple directed edges, allin the same direction and with the same multiplicity,{ C4 whose all edges are replaced by a directed C2.� Moreover, the edges of the same color, that join a pair of distinctblocks, induce a undirected subgraph of one of the following type:{ a disjoint union of multiple edges,{ K2;1 or a disjoint union of two K2;1,{ K2;2 or a disjoint union of two K2;2.



COVERS 35
Figure 2.2: One of the polynomially solvable block typesRecall, that vertices forming a block of degree re�nement have the samedegree, indegree and outdegree with respect to an arbitrary edge color. If ablock is a disjoint union of more components (the �st and the second case),then the degree is the same, for all vertices from the block of the degreere�nement.As a particular result, the proposition states that the following cases arepolynomially solvable problems:� The F (j1; ::; jk)-cover, where F denotes the ower graph,� the banana B(j1; ::; jk)-cover,� the 4-star�sh-cover.Now, we focus our attention to the NP-complete instances of the H-coverproblem. In [39], Kratochv��l, Proskurowski and Telle proved that:� The W (1; 3; 3)-cover problem is NP-complete.� The H-cover problem is NP-complete for all k-star�sh graphs, for oddk greater to three.The crucial role of the weight graph W (1; 1; 1), in the characterizationof NP-complete cases, was explored in [37]:Theorem 2.16 Let H be a colored directed multigraph on two vertices. TheH-cover problem is NP-complete, if and only if H has only one block ofdegree re�nement, and there exists a color class Ei, such that HjEi containsW (1; 1; 1) as a subgraph or its directed clone with indegree and outdegreegreater or equal to three.See Fig. 2.3, for the three smallest NP-complete cases.2.2.3 Covers of regular graphsIn this section, we consider a regular graph H, as the underlying graphfor the H-cover problem. Its matrix of the degree re�nement has only one
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Figure 2.3: The three smallest NP-complete caseselement, that is equal to the degree of an arbitrary vertex. The methods,that were used to prove the existence of a polynomial-time algorithm for theH-cover problem, were based on a �ne distribution of vertices into classesof the degree distribution. No algorithm has been constructed yet for thepolynomial testing of the existence of a H-cover, when the graph H has atleast two cycles and contains a block of degree re�nement with at least 5vertices. Therefore, it was generally expected that for all k-regular graphswith k � 3 the H-cover problem is NP-complete.Here we prove this conjecture.The result of Abello et al. [1] stated, that there are many graphs H,such that the H-cover problem is NP-complete, even if the constructionwas based on highly symmetric graphs, i.e., graphs with a rich group ofautomorphisms.The question was open for the class of rigid graphs [1], and was solvedpositively by using the following \multicover" approach [38].De�nition A graph G is called a multicover of H, if for any pair of ver-tices u 2 V (G) and v 2 V (H), every isomorphism SG(u) ! SH(v) can beextended to a covering projection G! H.The multicover always exists for all regular graphH, and can be obtainedby a Cayley-like construction, even if it requires exponentially large numberof vertices with respect to the size of H.We need one more de�nition for the proof of the NP-completeness ofcovering problem for k-regular graphs.De�nition A graph H is solid [16] (or good [38]), if for any vertex u 2V (H), the graph Hu, that arises by the splitting the vertex u of degree dinto leaves u1; ::; ud, involves only partial covers Hu ! H, that became au-



COVERS 37tomorphisms of H after unifying all vertices ui into the original vertex u.The multicover and solid graphs were used in a construction of an gadgetfor a polynomial reduction from the hypergraph colorability.Theorem 2.17 [38] The H-cover problem is NP-complete for solid graphs.In addition two large classes of graphs were shown to be solid.Theorem 2.18 [38] All k-edge colorable k-regular graphs and all dk+22 e-edge-connected k-regular graphs are solid.The characterization is tight in the sense that in [16] there was given anexample of a dk+12 e-edge-connected k-regular graph, that is not solid.We �nish the classi�cation by extending the result of Theorems 2.17 and2.18 into the class of all regular graphs.Theorem 2.19 [14] The H-cover problem is NP-complete for all k-regulargraphs H of k � 3.Proof: Without loss of generality, we assume that H is connected, and thatH is not a solid graph. In particular, we assume that H is not bipartite,since bipartite k-regular graphs are k-edge colorable (cf. Theorem 1.5) andare solid.The Kronecker double cover ~H = H �K2 is k-edge colorable k-regularconnected graph, and the ~H-cover problem isNP-complete, due to Theorems2.17 and 2.18.We show a reduction of the ~H-cover problem to the H-cover problem.Consider a graph G, whose covering projection G ! ~H is questioned. Weclaim that G covers ~H, if and only if G is bipartite, and G covers H.The only if statement is trivial, since ~H is bipartite, and only bipartitegraphs can cover a bipartite graph (this holds even for a general graph ho-momorphism). Moreover, any covering projection G! ~H can be extendedto H by a composition with a covering projection ~H ! H.In the other direction, assume that f : G! H is a covering projection,that G is bipartite, and that its proper bicoloring using black and whiteis given. For each vertex u of H, denote by ub and uw its two copies inu�K2 � H �K2 = ~H. We de�ne a mapping ~f : G! ~H by~f(v) = (uw if f(v) = u and v is white,ub if f(v) = u and v is black.



COVERS 38Since each vertex has all neighbors colored by the complementary color,the above mentioned mapping satis�es all properties of a covering projection.� As a consequence of Corollary 2.12 and Theorem 2.19, we get that thecomputational complexity of the class of all regular graphs is fully classi�ed.2.2.4 Covers of cyclic graphsIn the last section, we show the complexity characterization for the k-star�sh-cover problems.We have already mentioned in Proposition 2.15 that the k-star�sh-coverproblem is polynomially solvable for k 2 f1; 2; 4g, even if the �rst two in-stances are multigraphs and do not correspond to a simple k-star�sh graph.Here we prove that for all other k, the problem is NP-complete.Consider a k-star�sh graph. By the method described in the para-graph 2.1.5, it can be transferred into a colored multigraph, which consistsof two cycles glued together. Each of those cycles has a di�erent color, forsimplicity, call them red and green. By the same technique we rebuild theinput graph into a colored multigraph, whose edges are colored by the samecolor set. Call the modi�cation of the k-star�sh graph Hk. For the futureuse, we denote the vertex set of V (Hk) = fv1; ::; vkgObserve that each vertex of Hk has adjacent exactly two red and exactlytwo green edges, and the same assumption holds for any graph that coversHk.De�nition Suppose that a connected graph G has its edges colored by redand green, and that each color class induces a set of disjoint cycles andisolated vertices. We de�ne the k-�lling graph bG as k copies of G connectedby extra new edges, such that:� All k copies of the same vertex of degree two are connected by a cycleCk.� The newly introduced edges connect the i-th copy of a vertex to its(i+ 1)-th copy (counted modulo k).� The new cycles are colored, such that every vertex is incident with twored and two green edges.



COVERS 39G1G2Gk red Ck green Ck
Figure 2.4: The k-�lling of a graph GObservation 2.20 The k-�lling graph bG fully covers the graph Hk, if andonly if G partially covers Hk.Proof: Since G � bG then one implication is trivial.Let [u; i] be the i-th copy of the vertex u. If g is a partial coveringprojection G ! Hk, then we de�ne f : bG ! H as f([u; i]) = vx+i ifg(u) = vx, where the addition is done modulo k. Then the mapping fis a full covering projection. �Lemma 2.21 If the k-star�sh-cover problem is NPcomplete, then the (ck)-star�sh-cover problem is also NP-complete, for any positive integer c.Proof: Let G be the input graph for the Hk-cover problem. If c = 1, thenthere is nothing to do, otherwise subdivide every edge by c � 1 extra newvertices and call the new graph G0. Then G0 partially covers Hck, if andonly if G covers Hk. Use bG0 as the input graph for the (ck)-star�sh-coverproblem, and note, that bG0 covers Hck, if and only if G covers Hk. �Lemma 2.22 The k-star�sh-cover problem is NP-complete for all odd k.Proof: Let G be an input graph for the Ck-color problem. We show a poly-nomial time reduction from the Ck-coloring problem, that is NP-completefor all odd k due to to Theorem 1.9.Replace each vertex u of degree d by a red cycle of length dk. Denote byu1; :::; udk the vertices of the cycle corresponding to the vertex u. Note, thatui and ui+k are mapped onto the same vertex under any (partial) coveringinto Hk.



COVERS 40For each edge incident to u, select a distinct representative among ver-tices uk; u2k; :::; udk . If ui and u0j are representatives of the edge e = (u; u0) 2E(G), then connect ui and u0j by an extra new green cycle Ck, such that uiand u0j are adjacent. Perform the last step for all edges of G, and call thenew colored graph G0.It is clear that under any partial covering g : G0 ! Hk, each set uki; 1 �i � deg(u) are mapped onto the same vertex. We de�ne the homomorphismc : G ! Ck by c(u) = g(uk), where Ck is the cycle of Hk spanned by thegreen edges. Moreover, if (u; u0) 2 E(G), then there are vertices ui; u0j ,such that (g(ui); g(u0j)) is a green edge of Hk, and (c(u); c(u0)) 2 Ck. Theapplication of the \�lling" Observation 2.20 �nishes the �rst implication ofthe polynomial reduction from the Ck-coloring problem.In the other direction, if a Ck-coloring of G is given, we embed Ck asthe green cycle into Hk. De�ne a mapping on vertices uik as the color of u,and �nd its extension onto vertices of degree two lying on the red and greencycles. Due to Observation 2.20 it is always possible extend the partial coverg : G0 ! Hk into a full covering projection f : bG0 ! Hk. �For the complete the characterization of the computational complexityof the k-star�sh cover problem, we need results for k being at least thirdpower of 2.Lemma 2.23 [13] The 8-star�sh-cover problem is NP-complete.Proof: We will reduce the traditional fourcolorability problem. Let G be agraph whose coloring using at most four colors is questioned. Replace eachvertex u of degree d by an extra red cycle C8k, and select d representativesof incident edges as described in Lemma 2.22.For every edge (u; u0) and its representatives ui and u0j, use the gadgetconsisting of two green C8 and one red C16 depicted in Fig. 2.5. Call thenew graph G0.Without lost of generality suppose, that the vertex ui is mapped ontovl under a partial covering g : G0 ! H8. Then a and b are mapped eitheron vl+1 or vl+7, and it forces that u0j maps either on vl+2, vl+4 or vl+6. Allrepresentatives of the original vertices are mapped onto vl with the sameparity of the index l. Assume that even indices are exposed. Then, we canuse vertices v2, v4, v6, and v8 as indicators for the four distinct colors. Wede�ne coloring of G as c(u) = g(ui). The construction of the edge gadgetensures that adjacent vertices get di�erent colors, and all pairs of distinctcolors might be used on the coloring of any edge of G.



COVERS 41ui u0ja b
Figure 2.5: The edge gadget for the 8-star�sh-cover problem (solid edges arered, dotted are green)Finally use Observation 2.20 to create the graph bG0 and ask for a fullcovering projections instead of a partial covering projection of G0. �Let us summarize the complexity results for the k-star�sh problem.Corollary 2.24 The k-star�sh problem is solvable in polynomial time, ifand only if k 2 f1; 2; 4g. The problem is NP-complete in all other cases.



Chapter 3The H-partial cover problemWe have de�ned the partial covering projection as a locally injective graphhomomorphism. In the previous chapter, we have also showed several com-plexity results for the H-cover problem, which asks for a more restricted |locally isomorphic homomorphism.Recall, that the computational complexity of the graph homomorphism(H-coloring) problem was fully characterized by Hell and Ne�set�ril theorem(see Theorem 1.9).We would like to establish the closest relation of the complexity char-acterization of H-partial cover problems to the complexity classes of theH-cover problem and the H-coloring problem, respectively.Any full covering projection can be viewed as a partial covering projec-tion. Conversely, Theorem 2.4 implies that whenever G and H have thesame degree re�nement matrix, then every partial covering projection is lo-cally isomorphic, i.e., a full covering projection. Hence, the following resultfollows:Theorem 3.1 [17] Let H be a connected graph. If the H-cover problem isNP-complete, then the H-partial cover problem is NP-complete, as well.Proof: Let G be a graph, for which the existence of a full covering projectionto H is questioned. Compute the degree re�nement matrices MG and MH .If these matrices are di�erent, reject the input, since due to Theorem 2.3it is a necessary condition for the existence of a full covering projection. IfMG = MH , then ask for a partial covering projection f : G! H. When fexists, then due to Theorem 2.4 the mapping f is a full covering projection,too. When no partial covering projection is found, then obviously no fullcovering projection exists. �42



THE H-PARTIAL COVER PROBLEM 43Observe that the above theorem and Theorem 2.17 prove the existenceof bipartite graphs, such that the H-partial cover is NP-complete.Due to Theorem 3.1, we focus our attention to graphs H, whose H-coverproblem is solvable in polynomial time, since there is still a possibility thatthe corresponding H-partial cover problem is NP-complete. In particular,due to Proposition 2.15, we will consider the classes of ower, banana andweight graphs, and we show that there are large subclasses of polynomiallysolvable problems, as well as NP-complete instances.Recall Corollary 2.12, which states that the H-partial cover problem ispolynomially solvable for graphs with at most one cycle in each componentof connectivity.3.1 Proof techniquesIn the complexity discussion we will use three di�erent techniques that helpus to determine the computational complexity of a particularH-partial coverproblem.These methods use various approaches from the graph optimization prob-lems, and some of these results might be interesting on their own. We devotethe forthcoming section to them.3.1.1 Subset of halfedgesIn several cases the question of the existence of a partial covering projectioncan be solved by the �nding of a feasible mapping on the neighborhood ofvertices of higher degree. The halfedge object, that is de�ned below, helpsus to �nd a mapping on a vertex and its adjacent edges.De�nition A multiset of halfedges E 12 (G) of a graph G consists of all or-dered pairs of vertices and edges that are mutually incident.More formally, E 12 (G) = f[u; e]; [v; e] 2 V (G)�E(G); e = [u; v]g.Observe that the element [u; e] appears at least twice in E 12 , when e isa multiple edge or a loop incident with the vertex u.We introduce two lemmas which shows that it is possible to �ng a speci�csubset of halfedges using the matching algorithm.First we describe the case of an unoriented graph.Lemma 3.2 Let G be a graph where every vertex u 2 V (G) has assigneda nonempty interval Iu = [au; bu] � [0; degG(u)], and where every edge e of



THE H-PARTIAL COVER PROBLEM 44G has given a subset Je � f0; 1; 2g. The question of whether there exists asubset of halfedges S � E 12 (G) satisfying8u 2 V (G) : jf[u; e] 2 S : e 2 E(G)gj 2 Iv8e 2 E(G) : jf[u; e] 2 S : u 2 V (G)gj 2 Jeis solvable in polynomial time.Proof: Subdivide each edge e of G, such that Je 6= f0; 2g, by an extra newvertex ue, and put Iue = Je. It is clear that the set S exists in G, if and onlyif the new graph G0 contains a factor F , s.t. degF (u) 2 Iu for all verticesu 2 V (G0).The above factor problem can be solved by a matching procedure [48],(Exercise 10.2.2). For the self-consistence we sketch the proof. Use a similarconstruction as in the proof of Theorem 1.8. For each vertex u 2 V (G0):1. Split its incident edges into deg(u) independent vertices forming theset Au,2. connect the set Au by a complete bipartite graph to a newly introducedset Bu of deg(u) � au independent vertices, and3. insert an extra set Cu on bu � au vertices and join it by a completebipartite graph to the set Bu.Finally form a clique on the set [u2V (G0)Cu, and, if the total number ofvertices in the new graph is odd, add an extra new vertex to the clique. Callthe new graph G00.Suppose, that a perfect matching in G00 exists. The construction of thetripartite gadget forces that each Au is incident to at most bu and at leastau edges of the matching. The same edges incident to the vertex u form thewanted factor in the original graph G .In the opposite direction, any factor of G0 can be easily transformed toa perfect matching of G00. �The statement and the proof of the directed case is similar. Now, wecan more precisely specify constraints for both endvertices of an edge.Lemma 3.3 Let D be an orientation of a multigraph G, and for every vertexu an interval Iu = [au; bu] � [0; degG(u)] is given. Moreover, let each edge~e = [u; v] 2 ~E(D) has assigned a set of pairs J~e � (f0; 1g � f0; 1g). Thequestion whether there exists a subset of halfedges S � E 12 (G) satisfying8u 2 V (G) : j[u; e] 2 S : e 2 E(G))j 2 Iu



THE H-PARTIAL COVER PROBLEM 45J~e = f[0; 1]gf0g f1gJ~e = f[0; 1]; [0; 0]gf0g f0; 1g
J~e = f[0; 1]; [1; 1]gf1gf0; 1gJ~e = f[0; 1]; [0; 0]; [1; 1]gf0; 1g f1; 2gu vu v u vu vFigure 3.1: The four replacement cases8~e = [u; v] 2 ~E(D) : [j[u; e] 2 Sj; j[v; e] 2 Sj] 2 J~eis solvable in polynomial time.Proof: We describe a replacement procedure, that should be performed onall edges of the graph G. If the set J~e contains none or both of unsymmetricpairs [0; 1] and [1; 0], then the orientation of e is not decisive and we canmodify e as showed in Lemma 3.2.We show a replacement procedure for an edge that contains exactly oneunsymmetric pair in J~e. W.l.o.g. suppose, that [0; 1] 2 J~e. There are fourpossible cases for the set J~e, and the corresponding replacement gadgets of~e = [u; v] together with the de�nition of the intervals I for extra new verticesare depicted in Fig. 3.1.Perform the replacement for all edges ~e of D and obtain the graph G0.Then, a factor F in G0 satisfying the degree constraints Iv exists, if and onlyif D has a proper subset of halfedges S. �3.1.2 Edge precoloring extensionThe edge coloring theory is one of the most developed part of the graphtheory. We shall mention the Vizing theorem (see Theorem 1.4) and Holyer'sresult on the NP-completeness of the existence of a edge 3-coloring [32].Kratochv��l and Seb�o showed in [40] that the precoloring extension is NP-complete for the class of perfect graphs, when at least three distinct colorsare used in the precoloring, or when the graph is precolored by two distinctcolors and each of these two colors is used on at least two vertices.The line graphs of bipartite graphs form a subclass of the class of perfectgraphs, (see Theorem 1.5) and we prove that the hardness result of theprecoloring extension holds also for this reduced class of graphs.
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Figure 3.2: The variable gadget VTheorem 3.4 [15] The question, whether there exists a proper edge 3-coloring of a bipartite graph extending a given precoloring is a NP-completeproblem.Proof: We show a reduction from the Not-All-Equal 3-SAT [21], problemLO3.Let � be a formula in the normal form, and let each clause has three (notnecessarily distinct) literals. We construct a graph G and de�ne a coloringf on a subset of E(G), s.t. f allows an extension to the entire graph G, ifand only if � has an satisfying assignment, s.t. each clause contains a falsevalued literal.We denote the three colors used in the edge-coloring of G by r; g and band call them red, green and blue.Assume that every variable in � has at most k positive and at most knegative occurrences. For each variable x, put into G an extra copy V x ofthe graph depicted in Fig. 3.2.For each clause z = (Lz1 ^Lz2^Lz3) of the formula �, put into G an extracopy of the graph Cz depicted in Fig. 3.3. We �nish the construction of thegraph G by series of uni�cations:For every variable x and each literal Lzi equal to x, unify the correspond-ing vertex lzi with an unique pxj that is not used by other literals. For eachLzi = :x unify lzi with an unique nxj0 .The graph G is bipartite. The classes of bipartition are indicated bywhite and black vertex color.De�ne the precoloring f on the dotted edges of G, as depicted in Figures3.2 and 3.3.



THE H-PARTIAL COVER PROBLEM 47c
c0

l1l2l3 r g
Figure 3.3: The clause gadget C
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Figure 3.4: Coloring of the clause gadget CConsider a proper edge coloring g of the graph G, that extends f . Onevery copy V x, the edges e1; ::; ek and e01; ::; e0k are colored red or green, andg(e1) = g(e2) = ::: = g(ek) 6= g(e01) = ::: = g(e0k).For each variable x, we assign x the true value if g(ex1) = r, and the falsevalue otherwise.We show that under the above assignment, each clause contains bothpositively and negatively valued literals. For a contradiction assume, that aclause z has all three literals positively valued. In the corresponding graphCz, all three edges connecting vertices lz1, lz2 and lz3 to the variable graphs arecolored red. The coloring cannot be extended to the entire graph Cz, sinceedges c and c0 should be colored by the same color. This coloring cannot beextended to the right part of the clause gadget, a contradiction. The sameargument proves the impossibility of the occurrence of three negative valuedliterals in Cz.In the opposite direction, consider a proper assignment of variables ofthe formula �. For each variable x, color the edge ex1 red, if the variable xhas assigned the true value, and color it green otherwise. Then each gadgetV x has an unique extension of the above coloring. Moreover, each clause



THE H-PARTIAL COVER PROBLEM 48gadget is connected to the rest of the graph by three edges, such that atleast one is red and at least one is green. Fig. 3.4 shows that the coloringcan be extended to the entire edge gadget Cz. The four remaining cases areobtained due to the symmetry of the graph and by the exchange of red andgreen color. �Corollary 3.5 The edge precoloring extension problem is NP-complete forthe class of cubic bipartite graphs.Proof: Use two copies of the graph G constructed in the previous proof,and merge each pair of the corresponding edges ending in a vertex of degreeone into a single edge. In addition, join every pair of the correspondingvertices of degree two by an extra new edge. The new graph G0 is cubic,and the formula � has a solution, if and only if both copies allow an edgeprecoloring extension. On the other hand, when a coloring of a single copyof G is given, it can be extended to the entire graph G0. �3.2 ResultsWe have already pointed that graphs whose (full) covering problem can besolved in polynomial time can bring a nontrivial characterization for thecorresponding H-partial cover problem. In this section, we consider theower F (a1; :::; ak), banana B(a1; :::; ak) and weight W (a; b; c) graphs withvarious parameters.Lemma 3.6 Let H be a graph, and t be a positive integer. Denote by H :t thegraph that arise from H by subdividing each edge by t�1 extra new vertices.Then the H-partial cover and H :t-partial cover problems are polynomiallyequivalent.Proof: If f is a partial covering projection G ! H, it is easy to extend finto a partial covering projection G:t ! H :t.In the opposite direction, let G be the graph, whose partial coveringprojection to H :t is questioned. Without lost of generality, we assume thatG is connected, otherwise we can test each component of G separately.Suppose G = Ck. The length of an arbitrary cycle in H is divisible by t,hence, G can cover H :t, if and only if k is divisible by t, and Ck=t covers H.Now consider G 6= Ck. Call a path maximal subpath of G, if all its innervertices are of degree two in G, and its endpoints have degree di�erent from



THE H-PARTIAL COVER PROBLEM 49two. In G, replace every maximal subpath of length k by a path of lengthdk=te. Call the new graph G0.Every pair of vertices of H :t of degree di�erent from two are at distancethat is a multiple of t. Then the same property holds for vertices of degreeat least three in G, or G cannot cover H :t. Hence, any maximal subpathof length k in G0 between vertices of degree at least three corresponds to apath of length kt in G. A similar argument shows that any maximal pathof G0 of length k, that ends with a leaf, corresponds to q maximal subpathof length at most kt in G.Then, G partially covers H :t, if and only if G0 covers H, and every pairof vertices of G that are of degree at least three, has distance divisible by a.�Corollary 3.7 TheW (ta; tb; tc)-partial cover problem is polynomially equiv-alent to the W (a; b; c)-partial cover problem. Similarly, the F (ta1; :::; tak)-partial cover, and the B(ta1; :::; tak)-partial cover problem are polynomiallyequivalent to the F (a1; :::; ak)-partial cover and to the B(a1; :::; ak)-partialcover, respectively.3.2.1 Two distinct parametersWe �rst consider the situation, when at most two distinct parameters a; bappear in the speci�cation of ower, banana and weight graphs. Instead ofF (a; a; ::; a; b; :::; b), we write F (ai; bj), where i and j denote the multiplicityof the parameters a and b, respectively. For simplicity, we drop the zeroexponent term in our notation, i.e., F (ai) = F (ai; b0) = F (b0; ai). The samenotation we use for banana graphs.Due to Corollary 3.7, we suppose through this section that a and b arerelatively prime.Theorem 3.8 The F (ai; bj)-partial covering problem is solvable in polyno-mial time for all a and b and every i; j.Proof: Let G be the graph whose partial covering to F = F (ai; bj) isquestioned. In the proof, the order of parameters a; b does not matter, andwe assume without lost of generality that i � 1.Assume that G is connected, otherwise we perform the following com-putation separately on each component of G. If G is a cycle, then it coversF if and only if its length is a nonnegative linear combination of a and b(when i; j � 1) or a multiple of a (when j = 0). This question can be easilytested in constant time.



THE H-PARTIAL COVER PROBLEM 50Now, assume G is not a cycle, and denote v the central vertex of F .By the local injectivity, every vertex of G of degree at least three must bemapped onto v under any partial covering projection. It remains to decidewhere vertices of degree at most two of G will be mapped. Consider amaximal subpath of length l in G with both endpoints of degree at leastthree. We decide whether none, one or both terminal edges of the pathcan be mapped into a cycle of length a in F . This decision can be donein �xed time, since for l > ab all three cases are possible. Denote the setof all possible cases by J(l), more formally, put 0 2 J(l), if the equationl = pa + qb allows a nonnegative integer solution with q � 2, let 1 2 J(l),when p; q � 1, and �nally 2 2 J(l), if p � 2.In G, replace each maximal subpath of length l by a single edge e, andput Je = f0; 1; 2g, when e ends in a vertex of degree one, and put Je = J(l)otherwise. Call the new graph G0.Assign Iu = [max(deg(u)�2j; 0);min(deg(u); 2i)] to every vertex u of G0and ask whether a proper subset of halfedges S for G0 exists, with respectto the sets Iu and Je. Due to Lemma 3.2 the question can be tested inpolynomial time. If the result is negative, then G cannot partially coverF (ai; bj), since the existence of the set S is necessary.Suppose that the set of halfedges S exists. There is a natural correspon-dence of the set of halfedges E 12 (G0) and the set E(G0:2). Denote G0a thebipartite subgraph of E(G0:2) restricted to the halfedges of S. The upperbound of each interval Iv shows that �(G0a) � 2i. Hence, edges of G0a canbe properly colored by at most 2i colors in polynomial time. We use these2i colors to distinguish between 2i starting segments of cycles of length a inthe graph F (ai; bj).Repeat the above coloring procedure also for the set S = E 12 (G0)nS, andget a similar coloring of halfedges that will be mapped in cycles of length b.Now the coloring uses at most 2j colors, di�erent from the 2i colors reservedfor a-cycles.Let us summarize what we have computed so far. We have constructed agraph G0 and colored its halfedges by at most 2(i+j) colors that correspondto 2(i+j) halfedges incident with the central vertex v. Now, in the graph G,partially cover every maximal subpath u0; ::; ul joining two vertices of degreeat least three into F , such that both endvertices u0 and ul are mapped ontothe central vertex v, and vertices u1; ul�1 are mapped into the cycles of F ,that are used as colors on halfedges (u0; (u0; ul)) and (ul; (u0; ul)). Similarly,�nd a partial covering of the other maximal subpaths of G, but rememberthat only the path ends of degree at least three needs to be mapped onto



THE H-PARTIAL COVER PROBLEM 51the central vertex. �In contrary to the previous theorem, the banana graphs with two distinctparameters allows both polynomially solvable and NP-complete instances.Theorem 3.9 The B(ai; bj)-partial covering problem is solvable in polyno-mial time, if a and b are both odd, or i or j are equal to zero.Proof: Note that due to Corollary 3.7 the B(ai)-partial covering problemis equal to the B(1k)-partial covering problem, that is equal to the edgecoloring of bipartite graphs, and can be solved in polynomial time (see The-orem 1.5).The proof is based on a similar argument like proof of Theorem 3.8. Weexpose the di�erences from the previous proof.Now, assume i; j � 1, and since the proof is independent on the relativesize of a and b, we also assume i � 2.Let G be the input graph for the B-partial covering problem, and asabove, we assume that G is connected. If G is a cycle, its length l is anonnegative linear combination ap + bq with p + q even and q = 0 whenj = 0, and with q � p when j = 1 respectively. This test can be performedin �xed time.Denote by v and w the two vertices of B = B(ai; bj) that have degree atleast three. Observe that the graph B is bipartite, and that the vertices vand w belong to the di�erent classes of the bi-partition.The graph G is bipartite and any pair vertices of degree at least threemaps onto the same target (v or w), whenever they belong to the same classof bi-partition, or no partial covering projection exists. We �x one of thetwo possible mappings on vertices of degree at least three and denote it byf . Create the graphG0, and compute sets J(l). When j = 1 then only linearcombinations with parameters p � 1 � q are allowed. Assign sets Je andIu = [max(deg(u) � j; 0);min(deg(u); i)], and ask for a subset of halfedgesS. As above the existence of S is the necessary and su�cient condition forthe existence of a partial covering projection f : G! B.Consider the graph G0a induced by halfedges from S and determine aproper edge coloring using at most i colors. This is always possible since G0ais bipartite and �(G0a) � i. This coloring helps us to extend the mappingf onto beginning segments of maximal subpaths G that maps onto a-pathsof B. Finally perform the same procedure for the complement of S, andextend f onto the entire graph G. �



THE H-PARTIAL COVER PROBLEM 52Theorem 3.10 The B(ai; bj)-partial covering problem is NP-complete when-ever ja� bj is odd, and i; j � 1.Proof: For i � 2 we show a reduction from the BW (i; j) problem, and wereduce the BW (j; i) problem in the case i = 1.Assume a is odd, b is even, and both parameters are relatively prime.We discuss the case i; j � 2 �rst. Let G be the i + j-regular graph whoseblack and white coloring is questioned. We replace each edge of G by a pathof length l = ab.We claim that the new graph G0 partially covers B = B(ai; bj), if andonly if a proper BW (i; j)-coloring of G exists. Consider a partial coveringprojection f : G0 ! B. All original vertices are mapped onto v or w, thevertices of degree at least three in B. Color a vertex u 2 V (G) black, iff(u) = v and color it white otherwise. There are only two ways how toexpress l = ab as nonnegative linear combination ap+bq: either p = b; q = 0or p = 0; q = a. Thus a maximal subpath, that is covered only onto b-paths of B, has ends mapped onto distinct vertices of B, whereas both endsare mapped onto the same target, if a a-pattern is used. Due to the localinjectivity of the partial covering projection and the fact that every vertexof G has degree i + j, exactly i neighbors of any vertex of degree at leastthree are mapped into an a-path, and exactly j neighbors are mapped intoa b-path of B. Obviously, the black and white coloring derived from thepartial covering is a proper BW (i; j) coloring.For the opposite direction, consider any BW (i; j) coloring of the graphG. The subgraph of G spanned by the edges connecting vertices with thesame color is i-regular and we denote it by Gs. The graph G:2s is bipartitewith maximum degree i, and due to Theorem 1.5 its proper edge-coloringusing i colors always exists. This edge coloring determines the mapping fromG0 into a-paths of B as follows: i di�erent colors represent i di�erent a-pathsof B. Since the beginning segments on any maximal subpath connectingvertices with the same color should be mapped onto di�erent a-paths, suchmapping always exists (remember that b is even, j � 2).Similarly, subgraph of G0, spanned by the edges interconnecting sets ofwhite and black vertices, is bipartite and j-regular, and can be colored usingj colors. These edge colors represent di�erent b-paths of B, and for everyedge color c, we use a partial covering pattern, that starts and ends insidethe c-th b-path to cover all maximal subpaths, that correspond to c-colorededges of G0.The mapping de�ned above is locally injective on the neighborhood ofevery vertex of G0, hence, it is a partial covering projection G0 ! B.



THE H-PARTIAL COVER PROBLEM 53Now, consider the B(ai; b) and B(a; bi)-partial covering problems. Weshow a reduction to the BW (i; 1) problem. The base idea and several ar-guments are inherited from the previous case. Let G be the (i + 1)-regulargraph whose black and white coloring is questioned. Replace every edge ofG by a path of length l where� l = ab + (a � 1)a for the reduction to the B(ai; b)-partial coveringproblem,� l = ab+ (b� 1)b for the B(a; bi)-partial cover.Suppose, that the new graph G0 = G:l partially covers B(ai; b). Thereare only two possibilities to cover a path of length l = ap + bq with bothends mapped onto vertices v and w, namely, p = a + b � 1; q = 0 andp = a � 1; q = a. The corresponding patterns are l = a + a + � � � + a andl = b + a + b + a + � � � + b, and in the �rst case both ends of the path aremapped onto the same target, while at the second case, one end is mappedon v and the other onto w. Note, that it is impossible to use two b-pathsconsecutively, since it violates the local injectivity around vertices v or w.As in the above case, the existence of a partial covering gives us a properBW (i; 1) coloring. When a BW (i; 1) exists, it is possible to �nd a partialcovering by the (half)edge coloring argument.Finally consider a partial covering projection G0 ! B(a; bi). The equa-tion l = ap+ bq allows only the following solutions: p = 0; q = a+ b� 1 andp = b; q = b�1 that corresponds to partial covering of a maximal subpath oflength l, namely by patterns l = b+ b+ � � �+ b and l = a+ b+a+ b+ � � �+a.The only di�erence from the previous case is that the covering pattern thatstarts with a b-path corresponds to an edge connecting two vertices withthe same color (observe that the number of summands is even), while thepattern with the a-path corresponds to a edge in G that connects white andblack vertex. The already presented edge coloring argument shows that apartial covering projection G0 ! B(a; bi) exists, whenever a proper BW (i; 1)coloring is given. �Combining together Theorems 3.9 and 3.10 and Corollary 3.7 we get thefollowing complete classi�cation:Corollary 3.11 The B(ai; bj)-partial covering problem is polynomially solv-able if a and b are divisible by the same power of two, and is NP-completeotherwiseNow, we focus our attention to the third class of \simple" graphs, namelyto the class of weight graphs. Recall, that due to Theorems 2.16, 3.1 and



THE H-PARTIAL COVER PROBLEM 54Corollary 3.7 the W (a; a; a)-partial cover problem is NP-complete. Surpris-ingly there are parameters a and b that the weight partial covering problemallows a tractable | polynomial time algorithm.Theorem 3.12 TheW (a; b; b)-partial covering problem is polynomially solv-able, when the parameter a is odd, and b is even.Proof: Observe that the graph W = W (a; b; b) is bipartite, hence, onlybipartite graphs G can partially cover W , and classes of bi-partition of Gdetermine the mapping f on vertices of degree three, as in the proof ofTheorem 3.9. Denote by v; w the two vertices of degree three in W , andcolor a vertex u 2 V (G) of degree three black, if f(u) = v, and color it whitewhen f(u) = w. Thus, the \hard" problem is to determine the mapping onvertices of degree at most two, and it can be solved by a simple procedure:For each maximal subpath of length l connecting two vertices of the samecolor, determine whether l = ap + bq allows a nonnegative solution with peven and q � p=2�1. Any maximal subpath connecting vertices of di�erentcolors can cover W , when l = p, or if l = ap + bq has a solution satisfyingq � (p� 1)=2� 1 and p is odd and greater or equal to three.The local injectivity on vertices of degree three | namely the decisionwhich initial segments will be mapped onto a-paths | can be tested by thehalfedge coloring procedure described in the proof of Theorem 3.9. �Theorem 3.13 The W (a; b; b)-partial covering problem is NP-complete, ifthe parameter b is odd.Proof: We show a reduction from the BW (2; 1) problem. Let G be a cubicgraph whose black and white vertex coloring is questioned.Replace each edge of G by a path of length l = ab + (b � 1)b to obtainthe graph G0 = G:l and suppose that a partial covering projection f : G0 !W = W (a; b; b) exists. Color vertices of G, such that a vertex u of degreethree gets black color, if f(u) = v, and is colored white when f(u) = w. Thelength l can be expressed either as a+ a+ � � �+ a, or b+ b+ � � �+ b. Hence,each vertex has two neighbors of the same color (when the b-pattern is usedin G0 along the corresponding path), and exactly one vertex of the oppositecolor: note, that the number of summands equal to a in the expressionl = a+ b+ a � � �+ b+ a is odd.In the opposite direction assume that G allows a BW (2; 1)-coloring. Themaximal subpaths of G0 can be partially covered intoW exactly by the sameway, as was shown in the proof of B(a; b; b) problem. �



THE H-PARTIAL COVER PROBLEM 55Theorems 3.12 and 3.13 gives us also the full characterization for theclass of W (a; b; b)-partial covering problems, i.e., the problem of testing theexistence of a partial covering of weight graphs with both cycles of the samelength.Corollary 3.14 TheW (a; b; b)-partial covering problem is polynomially solv-able, whenever b is divisible by a strictly higher power of two than a, and isNP-complete otherwise.3.2.2 Three parametersOne of the necessary conditions of the existence of an partial covering pro-jection states that the mapping of a selected maximal path allows only arestricted set of patterns. We perform the �rst classi�cation of the maximalsubpaths by the length of the path.For this purposes we introduce an argument based on the solving of aequation in natural numbers with special requirements:De�nition Let J = fj1; :::; jkg be a set of distinct positive integers. We saythat m has a path covering pattern with respect to J of type (a; b) and lengthl, if there exist integers xi; 1 � i � l satisfying� m = x1 + � � �+ xl� xi 2 J; 1 � i � l� x1 = a, xl = b,� xp�1 6= xp 6= xp+1 whenever xp�1 or xp+1 are de�ned.Note that whenever m has a solution of type (a; b), then it can be trans-formed into a solution of type (b; a) and the same length. Hence, the typeof a solution will be always expressed by an unordered pair.Now, we focus our attention to \simple" graphs with three di�erentparameters a; b and c. Although we cannot give a complete characterization,there still appear several NP-complete instances of the H-partial coveringproblem as well as polynomially solvable cases. We start the classi�cationby banana graphs.Lemma 3.15 The B(a; b; c)-partial cover problem is NP-complete wheneverthere exists m, such that m has a path covering pattern of type (c; c) of anodd length, and a pattern of type (a; b) of an even length, and no othercovering patterns exist with respect to J = fa; b; cg.



THE H-PARTIAL COVER PROBLEM 56Proof: We show a reduction from the BW (2; 1)-coloring problem. Let G bea cubic graph, whose black and white coloring is questioned. We replace eachedge of G by a path of length m, and show that the new graph G0 = G:mallows a partial covering to B = B(a; b; c), if and only if G has a properBW (2; 1)-coloring.Denote by v; w the two vertices of degree three in the graph B, andassume that a partial covering projection f : G0 ! B exists. Then everyvertex of degree three in G0 is mapped either on v or w. Color each vertexu 2 V (G) black, if f(u) = v, and color it white otherwise. The mapping fis locally injective on neighborhood of all u in G0, hence, one of the incidentedges (u; u0) is mapped into a a-path. The maximal subpath of length mthat starts by the exposed edge can be covered only by the pattern of type(c; c). The odd length of the path covering pattern implies that the oppositeend of the maximal subpath will be mapped onto the other vertex of degreethree in B, causing that u0 gets a di�erent color from the color of u.By the same argument we can show that the even length of the path cov-ering pattern of type (a; b) implies, that every vertex of G has two neighborscolored by the same color.In the opposite direction, assume a BW (2; 1)-coloring of the graph G.The partial covering projection can be found by the technique already de-scribed in the proof of NP-completeness of B(a; b; b)-partial covering prob-lem. �Corollary 3.16 The NP-completeness of the B(a; b; c)-partial covering prob-lem is maintained, even if at most one of the following cases occurs:� m has a covering pattern of type (a; a) or (b; b) of an even length, or� m allows a pattern of type (a; c) of any length, or� m has a pattern of type (b; c) of any length,in addition to the mandatory covering patterns of type (a; b) and (c; c) de-scribed in Lemma 3.15.Proof: The existence of the new covering patterns does not inuent thefact that any black and white coloring of graph G can be transformed intoa covering projection f : G0 ! B.We shall prove that the opposite implication is still valid. Any patterndescribed in the �rst case makes no contradiction, since the paths whichcovering starts by the a or b-segment, yield a vertex of the same color.



THE H-PARTIAL COVER PROBLEM 57One could be more careful when discussing the existence of a pattern oftype (a; c). Every vertex of degree three in G0 has assigned three maximalpaths, and the covering projection of each of these three maximal subpathsstarts by a di�erent path of B, namely a; b and c-path. The number ofappearance of the a-path as a stating segment is the same as the numberfor b-path or c-path.On the other hand, even a single use of the covering pattern of type(a; c) in the covering projection breaks the equality (the a-path is used morefrequently than the b-path), and hence the pattern of type (a; c) cannotappear in the covering projection G0 ! B.Due to the symmetry between a and b, we get the same argument forthe third case considering covering patterns of type (b; c). �Theorem 3.17 [17] The B(a; b; c)-partial cover problem is NP-completewhenever a+ b divides c.Proof: We apply Lemma 3.15 for m equal to c. The only covering patternsare m = c of type (c; c) (odd length) and m = a+ b+ a+ b+ � � �+ a+ b oftype (a; b) (even length). �The above approach yields the complete characterization of the compu-tational complexity of the H-partial covering problem for banana graphswith parameters 1; 2 and c.Theorem 3.18 [17] The B(1; 2; c)-partial cover problem is NP-complete forall c � 3.Proof: If c = 3k, then the result follows directly from Theorem 3.17.When c = 3k+ 1, then putting m = c+1, we get the following coveringpatterns m = 2+1+2+1+2 � � �+2 and m = c+1. Similarly, for c = 3k+2we select m = c+ 2, and get patterns m = 1 + 2 + � � � + 1 = 1 + c+ 1 andm = c+ 2. �The smallest triple of parameters for the B(a; b; c)-partial cover problemwhich is not tractable by the above technique is 1; 3 and 5. It is a directconsequence of the fact that the banana graph B(1; 3; 5) is bipartite, hencethe distribution of vertices of degree three of an input graph G into theclasses of the same target under a partial covering projection to B(1; 3; 5)follows from the bipartition of the graph G, and can be solved in polynomialtime.We use the result on the edge precoloring extension to prove, that �ndinga partial covering projection to B(1; 3; 5) is a NP-complete problem.



THE H-PARTIAL COVER PROBLEM 58u vu vgreen
Figure 3.5: The green gadgetProposition 3.19 The B(1; 3; 5)-partial covering problem is NP-complete.Proof: We show a reduction from the edge precoloring extension problemdescribed in Theorem 3.4. Assume G is a cubic bipartite graph, whose edgesare either blank or precolored by red, green or blue.We replace each blank edge by a path of length eleven, each blue edgeby a path of length three, and each green edge by the gadget depicted inFig. 3.5. Denote the new graph by G0.Consider a partial covering projection f : G0 ! B(1; 3; 5). The graph G0has maximal subpaths of lengths 1, 3, 5 and 11 and by exploring all possiblecases, we get that all covering patterns are of type (1; 1), (3; 3) or (5; 5) ofan odd length, namely the trivial patterns, 1 = 1, 3 = 3, 5 = 5 and fournontrivial patterns 5 = 1 + 3 + 1 and 11 = 1 + 5 + 1 + 3 + 1 = 3 + 5 + 3 =3+1+3+1+3 = 5+1+5. We color every edge of G red if the covering of thecorresponding maximal subpath in G0 starts with a 1-path of B = B(1; 3; 5),we color it blue if the 3-path is used as the starting segment, and green forthe 5-paths, respectively.Obviously, the new coloring of the graph G is an extension of the givenprecoloring (note that the pattern 1+3+1 is never used due to the construc-tion of the green gadget), and the local injectivity of the partial coveringprojection implies that every vertex of G has all three incident edges coloredby pairwise distinct colors.Now, consider a proper extension of the precoloring of G. It can besimply transformed to a partial covering projection G0 ! B, by using thecovering patterns described above. �The covering projection to a weight graph has a more complicated struc-ture. We present a polynomial reduction from the BW (2; 1)-coloring prob-lem to show that there are several NP-complete instances, but for this pur-poses we require di�erent properties of the covering patterns.Assume a maximal subpath of lengthm (with both ends of degree three)in a graph G, that partially coversW =W (a; b; c). Thenm can be expressed



THE H-PARTIAL COVER PROBLEM 59as a sum x1 + � � �+ xl satisfying:� xi 2 fa; b; cg 1 � i � l,� if xi = a then xi�1 6= a and xi+1 6= a, whenever xi�1 or xi+1 arede�ned,� if xi = xj 2 fb; cg; i < j, then the number of summands amongxi+1; :::; xj�1 equal to a is even.Observe, that the above properties also imply, that whenever xi = b andxj = c; i < j, then the number of a elements among xi+1; :::; xj�1 is odd.De�nition Call the expression m = x1+� � �+xl the weight covering patternof type (x1; xl) if all three properties de�ned in the previous paragraph aresatis�ed. De�ne the parity of the pattern as the number of elements fromthe sum, that are equal to a.Lemma 3.20 TheW (a; b; c)-partial covering problem is NP-complete, when-ever there exists an integer m, such that the only weight covering patternswith respect to (a; b; c) are of type (a; a) and the odd parity, and of type (b; b)and (c; c) (of an even parity due to the de�nition) and that for each allowedtype and parity at least one covering pattern exists.Proof: The reduction from the BW (2; 1) problem is straightforward, andis done by the same method as in Lemma 3.15. Recall that the partialcovering of graph G0 = G:m onto W =W (a; b; c) de�nes a proper black andwhite coloring, where the odd parity along the pattern of (a; a) type forcesdistinct colors of vertices incident to the corresponding edge in G, while thepatterns of an even parity connect vertices of the same color.The opposite direction is even simpler, since each color class of vertexcolor of G use patterns with both ends colored by the �xed color. �Theorem 3.21 TheW (a; b; c)-partial cover problem is NP-complete, when-ever a is a common multiple of b and c.Proof: Put m = a. The only possible covering patterns are m = a =b + b + � � � + b = c + c + � � � + c, that are required for the application ofLemma 3.20. �Corollary 3.22 TheW (a; 1; 2)-partial covering problem is NP-complete forall even a � 2.



THE H-PARTIAL COVER PROBLEM 60We conclude the section by showing that the seemingly harder class ofW (a; b; c)-partial covering problem surprisingly allows a polynomially solv-able instance.Proposition 3.23 TheW (1; 2; 4)-partial cover problem is solvable in a poly-nomial time.Proof: Let G be the graph whose partial covering to W = W (1; 2; 4) isquestioned. Call v 2 V (W ) the vertex of degree three belonging to the cycleC4, and call w the other vertex of degree three. We refer the edge (v; w) asthe central edge of W .The multigraph W is bipartite, hence we can assume that G is bipartitetoo, otherwise no partial covering exists. If G is a cycle, then a partialcovering exists, if and only if G is an even cycle. In the following, weassume G has at least one vertex of degree three. Find the bipartition ofV (G) = A [ B, and denote A3; B3 the vertices from the set A of degreethree, or from the set B respectively.We show a test of the existence of a partial covering projection f : G!W satisfying f(A3) = v; f(B3) = w. By the symmetry of sets A and B, wecan perform the same test with sets A and B interchanged. If both testsfail, then no partial covering projection exists.Let f be a mapping on vertices of degree three, which we want to extendinto a partial covering of the entire graph G. Consider a maximal subpathof length l in G with both endpoints u; u0 of degree three. According to thelength l and mapping of its endvertices, it can be decided in constant time,whether there exists a partial covering of the maximal subpath extending f ,and having none, single or both initial edges mapped onto the central edgeof W . Denote the set of all possibilities J(l; f(u); f(u0)) � f0; 1g2. Notethat unsymmetric pairs [0; 1] and [1; 0] can occur in J(l; v; w).We build a graph G0 by replacing each maximal subpath of length l con-necting vertices u and u0 by a single edge, and put J[u;u0] = J(l; f(u); f(u0))whenever both u and u0 are of degree three and J[u;u0] = f0; 1g2 otherwise.In addition put Iu = f1g for all vertices of G0, and ask whether thereis a proper subset of halfedges S � HE(G0), satisfying oriented constraintsgiven by sets Iu and J[u;u0]. Due to Lemma 3.3 this problem can be solvedin polynomial time.The existence of the set S is a necessary condition for any partial cov-ering, and we show that it is also a su�cient condition. By the de�nitionof sets J[u;u0] there always exists a weighted covering pattern of the cor-responding maximal subpath connecting vertices u and u0, mapping only



THE H-PARTIAL COVER PROBLEM 61those initial segments on the central edge, that are selected by the subsetof halfedges S, and mapping the other initial segments into cycles in W .Therefore, the subset of halfedges S can be transformed in polynomial timeinto a partial covering projection G!W (1; 2; 4). �3.3 Further researchWe showed that the complete characterization of computational complexityof H-partial covering problems is close related to the complexity character-ization of the class of H-covering problems.An open instance of the H-partial covering problem is rather expectedto be NP-complete, not only for the strict inclusion of the NP-completeinstances, but also due to the fact that the algorithm based on the classesof degree re�nement does not work for partial covers. We expect that manylarge ground graphs are NP-complete instances of the H-partial coveringproblem.It seems, that the variety of the cycle structure of the graph is essentialfor the NP-completeness of the H-partial covering problem, and althoughwe are far away to prove the statement, we o�er the following conjecture.Conjecture 3.24 The H-partial covering problem is NP-complete when-ever H contains K4 as a minor.We have illustrated the diversity of complexity results of the H-partialcovering problem on \simple" graphs whose H-covering problem is knownto be polynomially solvable, and showed that many of them turn to beNP-complete instances when asking for partial covers. Moreover, the casesthat remain polynomially solvable require a more complex technique, in thisthesis usually based on the matching algorithm.We shall �nally remark that bipartite targets require a special approach,since the partial covering projection on vertices of higher degree is partiallydetermined by the classes of bipartition, that might substantially simplifythe computational complexity of the correspondingH-partial covering prob-lem.



Chapter 4The �-labeling problem4.1 MotivationWe start this chapter by a practical motivation for the graph theoretic model.The telecommunication industry uses the modulation of electromagneticwaves for signal transfer, e.g., in the television or radio broadcasting, orin mobile telephony networks. The radio transmitters generate and receivesuch a signal, and are distributed onto earth surface in a network, that coversas largest area as possible. Each transmitter uses one or several frequencies,so that any device that is close enough and has tuned the same frequencycan establish the communication.When two transmitters are close enough and have assigned the sameor almost the same frequency, then their simultaneous broadcasting causesthat these waves interfere so no reception is possible at their neighborhood.The range of possible wavelengths is limited due to the physical andorganizational reasons, so there is a natural motivation to reuse the samefrequencies on distant transmitters, and cover the largest area by the shortestrange of frequencies, while maintaining the necessary di�erence betweenclose transmitters.There are several models considering various aspects | global or lo-cal interference, static or dynamic system, frequency separation or distanceseparation, see [43, 56] for an overview of possible models.We present a simple graph theoretic model for the above optimizationproblem. Transmitters are represented as vertices of a graph, where edgesconnect vertices in a close distance. We suppose, that each transmitter (ver-tex) needs to assign only one frequency (i.e., a nonnegative real number),that the di�erence between two frequencies is simply calculated by the sub-62



THE �-LABELING PROBLEM 63traction, and that this di�erence should be greater than some prescribedconstant c. A practical implementation should demand a proportional fre-quency di�erence, but after applying the logarithmic transformation of fre-quencies we get the \subtraction" di�erence.The next simpli�cation step allows us consider only natural-valued fre-quencies, because instead of assigning real numbers, it is possible to usemultiples of c [25] and perform all calculation and comparison modulo c.We have translated the problem of selecting a suitable set of frequenciesto the graph coloring problem, because we ask for a minimal numbering ofvertices of a given graph, such that adjacent vertices get di�erent numbers.We have used several results from the the graph coloring theory in thechapter devoted to graph covers, because this discipline is one of the old-est and the best developed part of graph theory and many structural andcomplexity results were already discovered.A more sophisticated model of the channel assignment problem considersalso interference of transmitters at a quite longer distance. In the new model,we ask for an assignment of nonnegative integers to the vertices of a graph,and we demand that vertices at distance i have assigned numbers that di�erby at least pi, where (p1; p2; ::; pk) is a �xed non increasing sequence ofnatural numbers.More formally, we de�ne:De�nition A function c : V (G)! N0 is called a L(p1;::;pk)-labeling, ifdist(u; v) = i � k ) jc(u)� c(v)j � pi:Let � be a positive integer. If all vertices of a L(p1;::;pk)-labeling havelabels less or equal to �, then we call the labelling a �(p1;::;pk)-labeling.The minimum � such that a graph G admits a �(p1;::;pk)-labeling is de-noted by �(p1;::;pk)(G).We are interested in the computational complexity of the determiningthe optimal �(p1;::;pk)-labeling. Hence we de�ne the two following classes ofdecision problems:Problem: �(p1; ::; pk)-labeling problemInput: A graph GQuestion: Is �(p1;::;pk)(G) � �?And more generally:
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Figure 4.1: An example of a 5(2;1)-labeling of a graphProblem: L(p1; ::; pk)-problemInput: A graph G, nonnegative integer �Question: Does G allow a �(p1;::;pk)-labeling?The L(p1; ::; pk) decision problem generalizes the class of all �(p1; ::; pk)-labeling problems, because, if for a certain � the �(p1; ::; pk)-labeling problemisNP-complete for a certain class of graphs, then for the same class of graphs,the L(p1; ::; pk)-problem is NP-complete, as well.While studying properties of a L(p1;:::;pk)-labeling, we can consider onlylabelings such that parameters p1; :::; pk have no common divisor.Lemma 4.1 All graphs G and all constants a 2 N satisfy:�(ap1;ap2;::;apk)(G) = a � �(p1;p2;::;pk)(G).Proof: The � inequality is obvious, since by multiplying each label ofan optimal �(p1;p2;::;pk)-labeling by a, we got a �(ap1;ap2;::;apk)-labeling of G.On the other way when a �(ap1;ap2;::;apk)-labeling of G is given, we replaceeach label c by bc=ac. We obtain a �(p1;p2;::;pk)-labeling of G, because, ifjc� c0j � api, then jabc=ac � abc0=acj � api and jbc=ac � bc0=acj � pi. �In the rest of the thesis we will deal with labelings with two parametersp and q, and due to the above lemma we suppose, that without lost ofgenerality, p and q are relatively prime. Also note, that any optimal �(p)-labeling is equivalent to a �(1)-labeling with all labels multiplied by p. Every�(1)-labeling of a graph is a ordinary coloring using at most � + 1 colors.



THE �-LABELING PROBLEM 65We can express the minimum number of necessary labels as �(p)(G) = p �(�(G)� 1).Corollary 4.2 The �(p)-labeling problem is NP-complete for � � 2p withrespect to the class of all graphs.If parameters p and q are equal, then due to Lemma 4.1 it is su�cientto explore properties of the L(1;1)-labeling of a given graph G. This labelinguses distinct labels along each edge, and, moreover, if two vertices share acommon neighbor, then they have di�erent labels too. In the other words,the labeling is locally injective to the set of labels, and when we model thelabels 0; 1; ::; � as the vertices of complete graph K�+1, then each �(1;1)-labeling of G corresponds to a partial covering projection G! K�+1.We already showed by Theorems 2.17, 2.18 and 3.1 that the K�-coloringproblem is NP-complete whenever � � 3, and is polynomially solvable oth-erwise (see Corollary 2.12).Corollary 4.3 The �(p; p)-labeling problem is NP-complete, for � � 3p andthe class of all graphs.4.2 The �(2;1)-labeling problemThe �rst non-trivial parameters of the L(p; q)-labeling problem are param-eters p = 2; q = 1. Historically this is the original form of a graph labelingproblem with a condition at distance two [58, 25]. In this section, we reviewresults on calculating �(2;1)(G), and on the computational complexity of the�(2; 1)-labeling problem.Griggs and Yeh showed that the number �(2;1)(G) can be easily deter-mined for paths, cycles and wheels.Proposition 4.4 [25, 58] Let Pn be a path on n vertices. Then �(2;1)(P2) =2, �(2;1)(P3) = �(2;1)(P4) = 3, and �(2;1)(Pn) = 4 for all n � 5.Proposition 4.5 [25, 58] Let Cn be a cycle of length n. Then �(2;1)(Cn) = 4for all n � 5.Proposition 4.6 [58] Let Wn denote the wheel graph on n+1 � 4 verticesformed from a cycle Cn and a star Sn by unifying each vertex of the cyclewith a unique vertex of degree one of Sn. Then �(2;1)(Wn) = n + 1 for alln � 3.



THE �-LABELING PROBLEM 66The number �(2;1) for trees can not be stated explicitly, but only twocases can occur.Theorem 4.7 [25] Let T be a tree with the maximum degree �(T ) � 1.Then �(2;1)(T ) 2 f�+ 1;�+ 2g.However Griggs and Yeh [25] conjectured that the L(2; 1)-problem fortrees is NP-complete, Chang and Kuo [8] gave a polynomial time algorithm.In Section 4.2.3 we show a polynomial time algorithm solving the L(2; 1)-problem for the class of k-almost trees with �xed k.Now consider the class of all graphs. Then the following upperboundholds:Observation 4.8 [25, 58] �(2;1)(G) � �(G)2 + 2�(G).Proof: We prove the observation by induction on the number of vertices.If G has one vertex, then the statement is trivially satis�ed.Select a vertex v 2 V (G) arbitrarily and label the graph G n fvg. Byinduction hypothesis, there exists a labeling with the maximum label atmost �(G)2 + 2�(G). We show that among numbers [0;�(G)2 + 2�(G)]there is at least one suitable for the label of the vertex v. The vertex v hasat most �(G) neighbors, and the label of each of them blocks at most threepossible labels for v. In addition there are at most �(G)2 ��(G) verticesat distance two from v, and their labels also can not be used as the label ofv. This gives us at most �(G)2 + 2�(G) forbidden labels for v, and at lestone number remains in the interval [0;�(G)2 + 2�(G)] as a suitable labelof the vertex v. �The above upperbound on �(G) was improved to �(G)2 +�(G) in [8].It was conjectured by Griggs and Yeh [25], that all graphs with maximumdegree � � 2 allow a (�(G)2)(2;1)-labeling. The conjecture is still open, evenif it was proven for restricted classes of graphs like chordal graphs [55], orgraphs of diameter two [25].4.2.1 Partial covers and generalized L(2; 1)-labelingThe general implementation of the channel assignment problem considersalso spaces with non-linear metrics. For example, by using this approach, itis possible to describe an interference between a frequency and its multiples.We will describe this setting as a graph-homomorphism model.De�nition Let H be a simple graph. A H(2;1)-labeling of a graph G is amapping f : V (G)! V (H) satisfying:



THE �-LABELING PROBLEM 671. if (u; v) 2 E(G), then distH(f(u); f(v)) � 2,2. when distG(u; v) = 2, then f(u) 6= f(v).In other words, any H(2;1)-labeling of G satis�es the homogeneous con-dition: distG(u; v) + distH(f(u); f(v)) � 3.In this concept, every �(2;1)-labeling is equivalent to a (P�+1)(2;1)-labeling.For example, a labeling satisfying constraints (2; 1) with circular metricwas considered by Leese, van den Heuvel and Shepherd in [56, 43, 42], andis equivalent to the (Cn)(2;1)-labeling.Proposition 4.9 A graph G allows a H(2;1)-labeling, if and only if G par-tially covers H.Proof: Consider a H(2;1)-labeling f : V (G)! V (H). The �rst condition isequivalent to the statement that f is a homomorphism to the complement ofH, since the condition distH(f(u); f(v)) � 2 implies (f(u); f(v)) 2 E(H).The second condition expresses that c is a locally injective mapping. �The decision problem, parameterized by the graphH, which asks whetheran input graph G admits a H(2;1)-labeling, will be called the H(2;1)-labelingproblem.Corollary 4.10 The computational complexity of the H(2; 1)-labeling prob-lem is equivalent to the computational complexity of the H-partial coverproblem.In view of Theorems 2.17 and 2.18, and Corollary 4.10, we get the fol-lowing statement:Theorem 4.11 The Cn(2; 1)-labeling problem is NP-complete, if and onlyif n � 5.4.2.2 Computational complexity of the �(2; 1)-labeling prob-lemThe concept of the L(p1;:::;pk)-labeling of a graph is derived from the tradi-tional graph coloring theory, and we have already shown that any propergraph coloring is equivalent to the L(1)-labeling. Since the problem of de-cide whether a graph can be colored with k colors is NP-complete for everyk � 3, we expect that every L(p1; :::; pk)-problem is NP-complete. We will
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v0 v1v2v3 v4 P5B(1; 2; 3) = P5 v0 v1v2v3 v4Figure 4.2: Graphs B(1; 2; 3) and P5prove the above conjecture for all labelings with two parameters in Theorem4.16.In particular the NP-completeness of the L(2; 1)-problem was exploredby Griggs and Yeh in the following special form: They proved that theL(2; 1)-problem is NP-complete, for graphs of diameter two and � = jV (G)j[25, 58].Using a proof technique based on partial covers, we improve the aboveresult to a full complexity characterization of the class of �(2; 1)-labelingproblems.Observation 4.12 The 4(2; 1)-labeling problem is NP-complete.Proof: The banana graph B(1; 2; 3) is the complement of the graph P5, seeFig. 4.2. The NP-completeness of B(1; 2; 3)-partial cover follows from The-orem 3.17 and we get the NP-completeness of the 4(2; 1)-labeling problemdue to Corollary 4.10. �Our proof technique uses frequently the following lemma, which showsthat on a certain set of vertices we can e�ectively reduce the set of possiblelabels.Lemma 4.13 Every vertex of degree � � 1 is labelled either by 0 or by �,under any �(2;1)-labeling.Proof: Due to Proposition 4.9 we can investigate the partial covering toP�+1, instead of the �(2;1)-labeling. Any partial covering f is locally injec-tive, and, therefore, degG(u) � degP�+1(f(u)). The biggest degree of graphP�+1 is �� 1, and only two vertices, namely v0 and v�, reach that maximaldegree. Hence, every vertex u 2 V (G) of degree �� 1 maps either onto v0or v�. �Theorem 4.14 [17] The �(2; 1)-labeling problem is NP-complete for all � �4, and is polynomially solvable otherwise.



THE �-LABELING PROBLEM 69P6 Qv0 v5v1v4 v3v2 p p0r p00Figure 4.3: Graph P6 and the replacement graph QProof: The case � < 4 follows from Corollary 2.12. All graphs P1, P2, P3and P4 have at most one cycle and hence the corresponding partial coveringproblems are solvable in polynomial time.We prove the statement by the induction by two on �. The case � = 4was proven by Observation 4.12. For � = 5 we show a reduction from theBW (2; 2)-coloring problem.Let G be a fourregular graph, whose BW (2; 2)-coloring is questioned.Replace each edge (u; u0) of G by a graph Q depicted in the Fig. 4.3, suchthat u corresponds to p and vice versa for u0. Call the new graph G0 and weshow that G0 covers P6 (see Fig. 4.3), if and only if G admits a BW (2; 2)-coloring.Due to Lemma 4.13, all vertices of degree four in G0 are mapped ontov0 or v5. We de�ne a coloring of G as follows: color a vertex u black, if itsmirror in G0 is mapped onto v0, and color it white otherwise.Note that all vertices p; p0; p00 2 V (Q) are mapped onto v0 or v5 underany partial covering to P6. The case study shows, that there are only sixpartial covering projections f : Q! P6 satisfying f(p); f(p0) 2 fv0; v5g. Allsix cases are depicted in Fig. 4.4.Consider a covering f : G0 ! P6 and suppose that a vertex u of G isblack. Denote its mirror in G0 by u0. The vertex u0 is mapped onto v0 andits neighbors are bijectively mapped onto the vertices v2, v3, v4 and v5.Suppose u0 is identi�ed with p in Q. When its neighbor r is mappedonto v5 or v2 then due to the case study the vertex p0 is mapped onto v0 andhence two neighbors of u have the same | black color. If f(r) 2 fv3; v4gthen f(p0) = v5 and on the other two neighbors of u are white.Colors of the neighbors of a white vertex can be discussed by the sameargument.For the opposite direction consider a BW (2; 2)-coloring of the graph G.First consider a subgraph of G spanned by edges with both ends black. Thisgraph is 2-regular, i.e., a set of disjoint cycles. We cover the corresponding
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Figure 4.4: The six cases of partial covering Q! P6subgraph in G0, s.t. on the cycle the pattern v0; v2; v5; v0; v2; v5; v0; : : : isused and the original vertices are mapped onto v0. By a similar argument,cover the subgraph of G0 corresponding to the white cycles by the patternv5; v3; v0; v5; v3; v0; v5; : : : .The remaining edges connect the set of white vertices to the set ofblack vertices. These edges form a bipartite 2-regular factor of G, i.e. aset of even cycles. For the corresponding subgraph of G0 we use patternv0; v3; v1; v5; v2; v4; v0; : : : .We de�ned an injective mapping on the neighborhood of the originalvertices, since two neighbors of a mirror of a black vertex (mapped to v0)are mapped onto v2 and v5 (in the \black" subgraph), while the other twoneighbors are mapped onto v3 and v4 (in the \black{white" factor).Induction step: We show that the P�+3-partial covering problem is NP-complete, when � + 2 � 6. We reduce the problem from the P�+1-partialcovering problem, which we assume to be NP-complete by the inductionhypothesis.Let G be an input graph for the P�+1-partial covering problem. Form abinary tree T with at least jV (G)j leaves, all of them in the same distancefrom the root. Denote by Li the set of vertices of T at distance i from theroot, and suppose that the layer Lk�1 contains all leaves. Add into T a layerLk with jLk�1j vertices, and connect it by a perfect matching to the verticesof layer Lk�1. Subdivide each edge of the tree by an extra new vertex, andjoin every vertex of G by an edge to a unique vertex from Lk, see Fig. 4.5.Finally introduce extra new leaves to increase the degree of vertices in alllayers Li; i � k upto �+ 1. Call the new graph G0.We show that G0 partially covers P�+3, if and only if G covers P�+1.Consider a covering f : G0 ! P�+3. By Lemma 4.13 all vertices in layers
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G Lk Lk�1 L1 L0Lk�2 ...Figure 4.5: The construction of the graph G0 (leaves are not included)Li; i � k are mapped onto v0 or v�+2. All vertices in layers with evensubscripts are mapped onto the same vertex (and vice versa for the oddsubscripts), since there cannot appear two vertices form two consecutivelayers with the same image under f .W.l.o.g., assume that all vertices in Lk map onto v�+2. Then no ver-tex from G can map either on v�+2 nor v�+1. Hence, G covers P�+3 nfv�+2; v�+1g = P�+1.In the opposite direction, suppose, that G covers P�+1. Extend thepartial covering to the entire graph G0 as follows: Vertices from layers Li,where i � k (mod 2), map onto v�+2. Vertices from Li : i 6� k (mod 2)map onto v0. Starting from the root of the tree T select a feasible imagefor every vertex between layers Li�1 and Li, i = 1; : : : k. Note, that theabove selection can be done also for every vertex u between layers Lk andLk�1, since its two neighbors are mapped onto v0 and v�+2, and it must bemapped into set fv2; : : : ; v�g. Moreover, there are two vertices at distancetwo from u and f(u) has to be di�erent from their images. Since � � 4, atleast one feasible image for u remains, see Fig. 4.6 showing the forbiddenlabels.Finally �nd a feasible image for all vertices of degree one adjacent to alllayers Li. �
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G Lk Lk�1uu0 u00

Figure 4.6: Forbidden images for u are v0; v1; v�+1; v�+2; f(u0); f(u00)4.2.3 The �(2;1)-labeling of sparse graphsWe conclude the section by exposing a class of graphs, for which the existenceof a �(2;1)-labeling can be tested in polynomial time. The base algorithmwas designed for trees by Chang and Kuo [8], but we show its extensionto the class of k-almost trees and prove that the �(2; 1)-labeling problem issolvable in linear time when the parameter k is �xed.De�nition A k-almost tree is a connected graph on n vertices with n+k�1edges.Theorem 4.15 [18] The �(2; 1)-labeling problem is solvable in O(�2k+9=2n)time for the class of k-almost trees on n vertices.Proof: Let G be a k-almost tree and consider its spanning tree. Thereare exactly k edges that are out of the spanning tree. We denote them bye1 = (u1; u01); :::; ek .There are at most O(�2k) �(2;1)-labelings of the vertices fui; u0i : i =1; :::; kg and we show a polynomial-time algorithm that tests whether sucha labeling f can be extended to the entire graph G.For every edge ei add into G two extra new vertices vi and v0i, remove theedge ei and replace it by the two edges (ui; vi) and (u0i; v0i). This operationinterrupts all cycles in G, hence the new graph T is a tree. For each i =1; :::; k, set f(vi) = f(u0i) and f(v0i) = f(ui).The labeling f can be extended to G, if and only if f allows an extensionto T . The \only if" implication is obvious, for the other direction we note,that any path including the edge ei, and connecting a neighbor x of ui toa neighbor x0 of u0i, has length three. Hence, no combination of labels f(x)and f(x0) can violate the properties of the �(2;1)-labeling, when re-creatingthe edge ei.



THE �-LABELING PROBLEM 73We show a modi�cation of the algorithm of Chang and Kuo [8] that testswhether a tree allows a �(2;1)-labeling, and the tree contains pre-labeledleaves.Suppose that T is rooted in the vertex v1. Use dynamic programming,and for each edge e = (x; y) of T , where x is parent of y, determine the setSe of all �(2;1)-labelings of e, that contain the labeling f and can be extendedto the subtree of T , consisting of x, y, and all descendants of y.When e is a leaf, then the set Se is explicitly de�ned, even if one or bothvertices of e are already labeled by f .Consider a edge e = (x; y), and assume that sets S(y;z) are known forall descendants z of y. Then the set Se includes a pair (a; b), if and only ifja � bj � 2, and for each z, we can select a unique representative from theset fc : (b; c) 2 Sz; c 6= ag. The system of distinct representatives can befound in O(�5=2) time by the matching algorithm.The tree T allows a �(2;1)-labeling, if and only if the pair (f(v1); f(u1))appears in the set Sv1;u1 . �Note that the L(2; 1)-problem is polynomially solvable for trees, becausedue to Theorem 4.7, we have to test only the case � = �(T ) + 1.4.3 The general �(p; q)-labeling problemHowever, the direct relation between partial covers and the channel assign-ment problem with general parameters p and q disappears, when q is at leasttwo, we can prove the NP-completeness of several �(p; q)-labeling problemsby the similar proof methods, like those we used for complexity characteri-zation of (partial) covering problems.We prove, that when parameters p and q are �xed, then at least oneinstance is NP-complete in the class of �(p; q)-labeling problems.In addition, under slightly stronger assumption p > 2q, the class of�(p; q)-labeling problems has a �nite number of polynomially solvable in-stances (here we assume P 6= NP , as well).Theorem 4.16 [18] For every �xed p; q : p > q � 1 the �(p; q)-labelingproblem is NP-complete for � = p+ qdpq e.Proof: We show a reduction from the BW (2; k)-coloring problem for k =dpq e � 1.Let G be a (k + 2)-regular graph, whose feasible BW (2; k)-coloring isquestioned. Replace each edge of G by a path of length three, and call the



THE �-LABELING PROBLEM 74new graph G0. We show that there exist a �(p;q)-labeling of G0, if and onlyif G allows a proper BW (2; k)-coloring.Suppose, that a �(p;q)-labeling f of G0 exists. The vertices of degree k+2are labelled either by 0 or by �, because when another label is used, thereis no su�cient space to label all its k + 2 neighbors.Consider a vertex u0 of degree k+2 in G0, that is labeled by 0. Then itsneighbors are labeled by p; p+q; p+2q; :::; ��q and �, and no two neighborshave the same label. Consider a path of length three P = (u0; u1; u2; u3).When u1 is labeled by p or by �, then the vertex u3 (of degree k+2) is alsolabeled by 0 and the pattern (0; p; �; 0) is used on P . If u1 is labeled by oneof p + q; :::; � � q then the vertex u3 is labelled by �, because the label ofu2 can attain the number � � p � q < p. Hence, among k + 2 vertices atdistance three from u0, k of them are labelled by � and the remaining twohave assigned label 0. Due to the symmetry of any �(p;q)-labeling, the viceversa holds for vertices that are labeled by �.We de�ne a BW (2; k)-coloring of G as follows: Color a vertex black, ifthe corresponding vertex in G0 is labelled by 0, and color it white otherwise.In the opposite direction, suppose that a BW (2; k)-coloring of G is given.The edges connecting white vertices induce a 2-regular subgraph, and onthe corresponding paths in G0 we use the pattern (0; p; �; 0) cyclically. Bysymmetry we use the sequence (�; 0; p; �) between \black" vertices. Theedges connecting the sets of white and black vertices form a bipartite k-factorof the graph G. Due to Theorem 1.5 these edges can be split into k disjoint1-factors. Then in G0, use pattern (0; p + iq; iq; �) on paths correspondingto edges from the i-th 1-factor of G. �Theorem 4.17 For each p; q : p > 2q, the �(p; q)-labeling problem is NP-complete whenever � � 9pq + 2p+ q + 1.Proof: In order to prove the statement, we will reduce theK4-cover problemto the �(p; q)-labeling problem.We �rst discuss properties of a special graph F , that will be used laterin the construction.Express � as a linear combination ap+ bq, where a > 4q+2; b > 4p+1.Coe�cients a and b always exists, since the number ��8p�2p�q is greaterto pq and can be expressed as a positive linear combination (a� 4q� 2)p+(b� 4p� 1)q. Denote by c = (a� 1)(bpq c � 1) + b� 1. Put the vertex setV (F ) = fz = x�0; x�1; x�2; :::; x�b ; x�1; :::; x�a; x�1 ; :::; x�c g. The edge set consists of three types of edges E(F ) = E� [E� [E�:
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x�b

x�1x�2x�3x�4
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x�1x�2x�3x�4x�c
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Figure 4.7: The construction of the auxiliary graph F� E� = f(x�i ; x�j) : 0 � i � b; 1 � j � ag ... edges forming a completebipartite graph between � and � vertices.� E� = f(x�i ; x�j ) : 1 � i < j � ag ... a clique on � vertices.� E� = f(z; x�i ) : 1 � i � cg ... c leaves added to the vertex z = x�0.Claim: The vertex z will be labeled either by 0; q; � � q or by �, under any�(p;q)-labeling of the graph F .Consider a �(p;q)-labeling f of the graph F . Vertices x�i induce a clique,hence, their labels are pairwise at least p apart. Every pair of vertices x�j andx�j0 has a common neighbor, so their labels di�er by at least q. Moreover, theset E� forms a complete bipartite subgraph, so labels of any x�i di�ers fromlabel of any x�j by at least p. The only two possibilities of labeling thesevertices are: Either use labels f0; q; :::; bqg on V � = fx�j ; 0 � j � bg andfp+ bq; 2p+ bq; :::; ap+ bqg on V � = fx�i ; 1 � i � ag, or reverse the labeling,s.t. f(V �) = fap+ bq; :::; ap+ q; apg and f(V �) = f(a � 1)p; :::; p; 0g.Without lost of generality suppose that z is labelled by iq, where 0 � i �b. Observe that at most bpq �1c vertices of the set V � = fx�j ; 1 � j � cg canuse labels from the interval [bq; bq + p]. The same holds for any interval ofform [bq+kp; bq+(k+1)p] for any k � a�1. In total at most (a�1)bpq �1cvertices of V � vertices can be labeled using labels greater than bq. In V �,there remain at least b� 1 = c� (a� 1)bpq � 1c unlabelled vertices. Hence,



THE �-LABELING PROBLEM 76f(z) 2 f0; qg, because any other label of u does not leave su�cient space in[0; bq] for labels of the remaining b� 1 vertices from V �.The case of f(z) = � or � � q follows due to symmetry of the labeling,i.e., the case f(z) 2 f(V �) = fap+ bq; :::; ap+ q; apg.Now, we are ready for the reduction from the K4-covering problem. LetG be a cubic graph whose covering toK4 is questioned. Form the graphH asfollows: for each vertex u 2 V (G) insert into H a disjoint copy of the graphF , and denote it by Fu. In each Fu rename the vertices z; x�1 ; x�2 ; x�3 ; x�4 byzu; u0; uv ; uv0 ; uv00 where v; v0 and v00 are the three neighbors of the vertex uin G.The last step in the construction of the graph H glues together thegraphs Fu: For each u 2 V (G), unify vertices u0; vu; v0u; v00u, and call the newvertex su.We show that any �(p; q)-labeling f of H induces a covering projectiong : G! K4. Let V (K4) = 0; q; �� q; �, and put g(u) = f(zu).If v; v0 and v00 are neighbors of u in G, then the vertices zu, zv , zv0 and zv00get distinct labels, because they share a common neighbor su. Immediatelyg is locally injective, i.e., a covering projection.In the opposite direction, suppose that the graph G covers K4 via g. InH label all zu by a label from 0; q; � � q; �, such that zu and zu0 gets thesame label, if and only if g(u) = g(u0).In each Fu, extend the labeling to vertex sets V � and V �, as claimedearlier.In the next step we label the set S = fsu; u 2 V (G)g. Every su has atmost nine neighbors at distance two in S, hence, ten labels, that di�ers byat lest q, are su�cient for a labeling of S. Use p+ q; p+ (p+ 1)q; p+ (2p+1)q; :::; p+(4p+1)q; ��(p+(4p+1)q); :::; ��(p+q) as these labels. Fig. 4.8shows that there is no conict with the other labels in H. (The �rst rowexhibits labels of V � and V � when z is labeled 0 or q. The last row describeslabels of these sets, when z is labeled by � or �� q. The middle row showspossible labels of the the vertex z and the set S.)Now, the only unlabelled vertices of H are of degree one. Extend thelabeling f to these leaves, as was shown earlier when we discussed propertiesof a labeling of the graph F . �4.3.1 Complexity of the �(p; 1)-labeling problemIn contrary to the �(p; q)-labeling problem with parameter q being at leasttwo, the condition q = 1 transforms to a searching for a labeling, wherevertices with a common neighbor gets distinct labels, but not distant labels.
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0 p 2p
0 q 2qq p+ q3q

(1 + q)pp+ (p+ 1)q(1 + 4q)pp+ (4p+ 1)qbq bq + p �
�

�� p
�� q�� (p+ q)0 ��� q

V � V �
(a� 1)p ap V �V �Figure 4.8: Ten labels are su�cient for the set S (comments in the text)This allows us to state the equivalence between a �(p;1)-labeling of a graphG and a partial covering G ! H�;p, where the graph H�;p is de�ned asfollows: V (H�;p) = fv0; :::; v�g, E(H�;p) = f(vi; vj) : ji � jj � pg. Thecomplete characterization of the class of H-partial covering problems givesthe complete characterization of the class of L(p; 1)-labeling problems. Asa immediate consequence of Corollary 2.12, we get the lower bound on thetransition between polynomially solvable and NP-complete cases.Corollary 4.18 The �(p; 1)-labeling problem is polynomially solvable forevery � � p+ 2; p � 3.In [18], there is presented a reduction, showing that the �(p; 1)-labelingproblem is NP-complete whenever � � p+ 5; p � 3.In addition the matching algorithm used in the proof of Theorem 4.15works also for parameters p � 2; q = 1, however, it has been proven NP-complete when q � 2 [18].Corollary 4.19 For every �xed k, the �(p; 1)-labeling problem is solvablein polynomial time for the class of k-almost trees on n vertices.



Chapter 5ConclusionLet us summarize what we have presented so far.We started exploring properties of graph covering projections by expos-ing the degree re�nement, i.e., a factorization of the vertex set, that restrictsthe image of a vertex under a possible covering projection. This structurewas essential during the polynomial reduction from the H-partial coveringproblem to the H-covering problem.The product of two graphs with respect to covers might be interestingfor its relation to the theory of categories, as well as for its applicationin distributed computing. We showed that the structure of degree re�ne-ment allows an extension using the factorization of edges into perfect match-ings, and that this extension achieves categorical properties of the product.On the other hand, we have mentioned results of Angluin, Gardiner andLeighton on the existence of a common cover. Both constructions might beinteresting in the emulation concept as a minimal universal networks for acertain class of parallel algorithms.We have reviewed the recent results on the computational complexity ofthe H-covering problem, and showed several instances that are polynomiallysolvable, as well as NP-complete instances.In Theorem 2.19 we have extended the result of Kratochv��l, Proskurowskiand Telle, proving that all k-regular graphs H of k � 3 are NP-completeinstances for the H-cover problem.The class of all H-covering problems is not fully characterized yet and,furthermore, no conjecture has been suggested for the boundary (if exists)between tractable instances (those which allow a polynomial-time algorithm)and di�cult (NP-complete) cases.A similar situation holds on the class of H-partial covering problems,78
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I.II. III.IV.V.VI. H-coloring

H-partial cover
H-coverFigure 5.1: Diagram on polynomially solvable and NP-complete instanceseven though there is a direct connection to the characterization of computa-tional complexity of H-covering problems. Namely the class of NP-completeinstances of the H-partial covering problem is a superset of NP-complete el-ements related to full covers.We concentrated on graphs H, where it is known that the H-coveringproblem is polynomially solvable, and we investigated whether this is stillvalid when asking for a partial covering projection. Both NP-complete andpolynomially solvable instances were found. It deserves interest to �nd outthe extent to which matching and halfedge coloring methods are applicable,as well as the question of why bipartite graphs are more frequently tractablethan the others (e.g., several bipartite banana graphs). The last questionrelate homomorphisms and locally injective homomorphisms on bipartitegraphs, and would show, in which moment, the local injectivity causes theH-partial covering problem to be hard.Both H-cover and H-partial cover problems belong to so-called con-straint satisfaction problems (CSP � NP ). Assuming P 6= NP , it is ex-pected that the class CSP has a strict boundary separating NP-completeand polynomially solvable problems, i.e., each problem belonging to CSP iseither polynomially solvable or NP-complete [41, 12].We try to illustrate the relation of polynomially solvable andNP-completeinstances of H-coloring, H-cover and H-partial cover problems in Fig. 5.1.The outer region corresponds to the NP-complete instances and the innerarea contains graphs for which an algorithm running in polynomial timeis known. The dotted boundary means that there exist instances wherecomputational complexity is still undecided.The following list of examples shows that no region is empty:I. W (1; 2; 4) or B(ak; bl), a and b odd,



CONCLUSION 80II. even cycles C2k+1,III. B(1; 3; 5),IV. B(ak; bj), a 6� b (mod 2),V. K :2n , the cube graph (K2)3,VI. complete graphs Kn.In the last chapter, we have described a simple graph theoretic model forthe channel assignment problem, and have showed that several cases can bereduced to partial covering projections. The same argument glues togetherthe characterization of the computational complexity of several classes ofthe �(p1; :::; pk)-labeling problem with corresponding classes of the H-partialcovering problem, even on both sides, there are problems requiring their ownapproach. Similarly, no full complexity characterization is known yet for the�(p1; :::; pk)-labeling problem, and even two parameters p; q expose a varietyof non-trivial reductions.We have concentrated on the L(p; q)-labeling problem of almost trees,and showed that there exists a �xed parameter tractable algorithm when theparameter q is at most one. As far as we know, the L(p; q)-labeling problemis open for higher values of q.We hope that we presented several interesting aspects connecting alge-braic nature of graph homomorphism with the combinatorial optimizationmethods that might �nd an application in the channel assignment industry.
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