Questions to understand the topic of the lecture

» Is it true that no quadratic form over a vector space of
characteristic two can be diagonalized?

» If there exists a symmetric bilinear form f that corresponds to
a given quadratic form g, then is f unique?

» How the coefficients of an analytic expression change if we
change the basis?

P Is it true that if a symmetric matrix A can be diagonalized by
RT AR, then R can always be chosen upper triangular?

» [s it true that when a quadratic form g on V over R has
diagonal matrix with some 1 and some —1, then there exist
vectors u, w € V such that g(u) < 0 < g(w)?



Bilinear and quadratic forms

Definition: Let V be a vector space over a field K and let a
mapping f : V x V — K satisfies:
» Vu,ve V. VacK: f(au,v) = f(u,av) = af (u, v)
> Vuv,we V:f(u+v,w)="f(uw)+f(v,w)
> Vu,v,we V:f(uv+w)="f(uv)+f(uw)
Then f is called a bilinear form on V.
A bilinear form is symmetric if Yu,v € V : f(u,v) = f(v, u).
A mapping g : V — K is called a guadratic form, if there exists a
bilinear form f such that g(u) = f(u, u) for all u € V.
Examples: Any inner product on a space over R, but not over C!
For V = Z%, a bilinear form:
f(u,v) = uivi +2uivo + 4upvi + 3upve
The corresponding quadratic form:
g(u) = f(u,u) = vrur +2uiun +duauy + 3upn = U3 + uyup + 3u3



Matrices of forms

Definition: Let V' be a vector space over a field K and let

X = (v1,...,vp) be its basis. The matrix of a bilinear form f w.r.t.
the basis X is the matrix B defined as b; j = f(v;, v;).

The matrix of a quadratic form g is the matrix of a symmetric
bilinear form f corresponding to g, if such symmetric f exists.
Example: For V = Z%, and the canonical basis K, the bilinear form

1 2
f(u,v) = uvi + 2u1vo + 4upvy + 3up vy has matrix B = <4 3>

33

On V = 73 the quadratic form g(u) = ujup corresponds e.g. to

and g(u) = uf + uyu, + 3u3 has matrix B = (1 3)

the bilinear form with matrix B = <8 é) but to no symmetric.



Matrices of forms

Definition: Let V' be a vector space over a field K and let

X = (v1,...,vp) be its basis. The matrix of a bilinear form f w.r.t.
the basis X is the matrix B defined as b; j = f(v;, v;).

The matrix of a quadratic form g is the matrix of a symmetric
bilinear form f corresponding to g, if such symmetric f exists.

Observation: b; = f(v;,vj) = 3(g(vi + vj) — g(vi) — g(v)))
Proof: g(vi + vj) = f(vi + v}, vi + vj)
= f(vi.vi) + f(vi, vj) + (v}, vi) + (v}, v))
g(vi+vj) — g(vi) — g(v) = f(vi, vj) + (v}, vi)
Observation: The use of matrices of forms:
f(u, V)Z[U]TB[V]xv g( ) = [u] % Blu]x.

Proof: When u = Z ajvi and w = Z bjv;, then
i=1 j=1

fluw) = f(z ajvj, Z ijj> = En: Z:: aif(vi, vj)bj = [u])-’(—B[w]X

i=1 j=1 i=1j=1



Definition: The analytic expression of a bilinear form f over K"
with matrix B is the homogeneous polynomial

f((X17 N 7Xn)T7 (_y]_7 .o 7'y,-,)-,—) = ZZ bIL}X’”
i=1 j=1

... analogously for quadratic forms and/or relative to a basis X.

Observation: Let B be a matrix of a b/q form w.r.t. a basis X.
Then [id]!, B[id]yx is the matrix of the same form w.r.t. Y.
Proof: [U]X = [id]yx[u]y, [V]X = [id]yx[v]y,
f(u,v) = [u] % B[vlx = ([id]vx[uly)" Blid]yx[v]y

= [u]Jlid]yx Blid]vx[v]y.



Diagonalization of forms

Theorem: If g is a quadratic form on a vector space V of finite
dimension n over a field K other characteristics than 2, then the
form g allows a diagonal matrix B w.r.t. a suitable basis X.

(holds also for symmetric bilinear forms)

Rephrased in terms of matrices:
Theorem: For any symmetric matrix A € K™ with char(K) # 2
there is a regular matrix R such that RT AR is diagonal.

Compare with the diagonalization of real symmetric matrices
of linear maps — R could indeed be orthogonal: RT = R1 hence
RTAR = R7'AR. Columns of R (ON basis) are principal axes.

Example: No way to diagonalize over Zs,
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L 2o (1 1Y (0 1) (1 1)\ (2 O
but over Zs it is possible: (1 2) (1 O) <1 2>_<0 1)



Theorem: For any symmetric matrix A € K™ with char(K) # 2
there is a regular matrix R such that RT AR is diagonal.

Proof: By induction on n. ol al
Denote A=A, = -
al A
o 1|-1aT
If « #0, let P, =
! 0 Infl
1 07 | |a|aT ||1]-2a”

Then P,-,rA,,P,7 =

_éa l—1 ' al A . 0 I,—1

o al 1

—éaaT—i—Z\ o | Y 0| A1

where A,_1 = A— &aaT is symmetric.



Theorem: For any symmetric matrix A €

K" with char(KK) # 2

there is a regular matrix R such that RT AR is diagonal.

Proof: By induction on n. ol al
Denote A=A, = -
al A
1 —éaT al 0T
If 0, let P, = . Then PTA,P, = ,
Oz?é n 0 Infl n Anln 0 Anfl

with A,_1 symmetric. By induction hypothesis 1] oT
there exists R,_1 for A,_1. We choose R, = P,, -

Then RTA,R, = -PTA,P,-

0 Rn—l
(1] o7
0 Rnfl
is diagonal.



Theorem: For any symmetric matrix A € K™ with char(K) # 2
there is a regular matrix R such that RT AR is diagonal.

Proof: By induction on n. ol al
Denote A=A, = -
al A
1 —éaT al 0T
If 0, let P, = . Then PTA,P, = ,
Oz?é n 0 Infl n Anln 0 Anfl

with A,_1 symmetric. By induction hypothesis 1] oT
there exists R,_1 for A,_1. We choose R, = P,, -

Then R,;’—Aan is diagonal.

Example: K =73, A3 = (

= NN



Theorem: For any symmetric matrix A € K™ with char(K) # 2
there is a regular matrix R such that RT AR is diagonal.

Proof: By induction on n. ol al
Denote A=A, = -
al A
1 —éaT al 0T
If 0, let P, = . Then PTA,P, = ,
Oz?é n 0 Infl n Anln 0 Anfl

with A,_1 symmetric. By induction hypothesis 1] oT
there exists R,_1 for A,_1. We choose R, = P,, -

Then R,;’—Aan is diagonal.

0 Rn—l

If oo =0 but @ # 0, then a; 1 # 0 for some i. Use the elementary
matrix E for adding the i-th column to the first. Take A’ = ET AE
instead of A. As o/ = 2a;1 # 0, we may follow the previous case.

1] o"
0 Rn—l'

If o =0and a=0, then let A,_1 = A and get R, =




Methods of diagonalization

» Real symmetric matrices can be diagonalized with
orthonormal eigenvectors.

» By Gaussian elimination — we perform each operation
simultaneously on both rows and columns.

Observation: If A is symmetric then A’ = ET AE is symmetric too.
Corollary: Lower triangular RT AR is diagonal.

Example:
2 0 1|1 0
01 12 1
1 1 1/{0 O

(221100>”_|<221100>“_|<
2 0 2|0 1 0] ~(0o1 1|21 0]~
12 1/0 0 1/™\1 2 1|0 0 1/ o

0

1

2

2 0
II{I\JlrI 0 1
0 1

The diagonal matrix RT AR is on the left.
On the right is the matrix of row operations, i.e. RT.

o = O

= O O



Sylvester’s law of inertia
Theorem: Every quadratic form on a finitely generated real vector
space allows a diagonal matrix with only 1, —1 and 0.
Moreover, all such diagonal matrices corresponding to the same
form have the same number of 1's and the same number of —1's.

Definition: Let a real quadratic form g is represented by a diagonal
matrix B containing only 1, —1 and 0.

The signature of the form g is the triple (#1,# — 1,#0),

counted along the diagonal of the matrix B.



Sylvester’s law of inertia
Theorem: Every quadratic form on a finitely generated real vector
space allows a diagonal matrix with only 1, —1 and 0.
Moreover, all such diagonal matrices corresponding to the same
form have the same number of 1's and the same number of —1's.

Example: g : R? — R given by B = g _33 w.r.t. K.
The matrix of g w.r.t. the basis: X = {(3,3)7,(-%,%)7} is
2 1 2 1
. . 3 3\(0 3 3 3 1 0
3 3 3 3

2
6x1x2 — 3x5



The six cases of diagonalized quadratic forms R? — R

SRR

AN

o
“““‘\‘\‘\\\‘

x12 + x22

(ordered by the rank and then 1 before —1)



Sylvester’s law of inertia

Theorem: Every quadratic form on a finitely generated real vector
space allows a diagonal matrix with only 1, —1 and 0.

Moreover, all such diagonal matrices corresponding to the same
form have the same number of 1's and the same number of —1's.
Proof:

1. Existence: Let B be the matrix of the form. w.r.t. some basis Y.
Real symmetric matrices can be diagonalized, i.e. any B = RT DR

for a regular R. =0 d,;=0, s,;=1
Split D as ST D’'S where dii{>0 d{ﬂ- =1, s;i=+/di

<0 d,é,- = —1,5,'7,' = \/—d,",'
Now SR is regular and B = (SR)" D'SR.
Choose the basis X, the coordinates of vectors of X w.r.t. Y are
the columns of SR, i.e. [id]x,y = SR and also [id]y x = (SR)™!.
Now [id];xB[id]y)( = ((SR)™ )T (SR)TD'SR(SR)™1 =D’ is
the desired diagonal matrix of the form.



Sylvester’s law of inertia

Theorem: Every quadratic form on a finitely generated real vector
space allows a diagonal matrix with only 1, —1 and 0.

Moreover, all such diagonal matrices corresponding to the same
form have the same number of 1's and the same number of —1's.

Example:
7 ~10-2 33\ /8oy (353
B=|-104 8 |=(-221|(0-90)|2 -2|=R'DR
-2 8 -2 122 000/ \21 2
3 33 3 3 3
1800 3v/200 100 3200
D=0 -90 0 30 0710 0 30|=S"D'S
0 0 0 0 01 0 00 0 01
3v200\ /3 -5 —3 2V2 —2v2 -2
lidlxy=SR=1| 0 30| (3 3% -3]=|1 2 -2
0 01 2 1 2 2 1 2
3 3 3 3 3 3

B=R"DR=R"STD'SR = (SR)" D'SR = [id|} , D'[id]x,y
<~ [I'd];’%XB[I'd]y’X =D



2. Uniqueness of the numbers of 1's, —1's (and hence also 0’s):
Let X = (u1,...,u,), Y =(v1,..., V) be two bases s.t. the
corresponding matrices B and B’ of the form g are diagonal with
1's, —1's and 0's ordered. s.t. 1's are first, then —1's and 0's are
last.

As products with regular matrices [id]xy do not change the rank:
#0'sin B=n—rank(B) = n—rank(B') = #0's in B'.

Let r=#1'sin B, s = #1'sin B'. If r > s, then consider the
subspaces L(uy, ..., u,) and L(Vst1,..., V). The sum of their
dimensions r + n — s exceeds n, hence they intersect nontrivially.

We use a fact from WT:
dim(U) +dim(V) =
ov, +dim(L(U U V))

® Vsi1|| LHS is strictly bigger than n,
dim(L(UUV)) <dim(R") =n
—

.vl

.vn




2. Uniqueness of the numbers of 1's, —1's (and hence also 0’s):
Let X = (u1,...,u,), Y =(v1,..., V) be two bases s.t. the
corresponding matrices B and B’ of the form g are diagonal with
1's, —1's and 0's ordered. s.t. 1's are first, then —1's and 0's are
last.

As products with regular matrices [id]xy do not change the rank:
#0'sin B=n—rank(B) = n—rank(B') = #0's in B'.

Let r=#1'sin B, s = #1'sin B'. If r > s, then consider the
subspaces L(uy, ..., u,) and L(Vst1,..., V). The sum of their
dimensions r + n — s exceeds n, hence they intersect nontrivially.

Choose w € (L(u1,...,u) N L(Vsy1,...,Vvy))\ O, thus

w]x = (x1,...,%,0,...,0)7, [w]y = (0,...,0,ysr1,...,¥n) .
Now g(w) = [w]B[w]x = xZ + -+ x? > 0 (> as w # 0), but
gw) =[w]]B'w]y = —y2,—... —yrzank(B,) < 0, contradiction.

Therefore r # s, by symmetry also s # r, hence r = s.



Comments

Observation: Forms with real positive definite matrices are those
that could be diagonalized into /,

— compare Cholesky factorization A= UYU = UTI,U.

Observation: An analogous statement for complex symmetric forms
(other property than Hermitian!) yields diagonal matrices with 1's
and 0’s on the diagonal; including the inertia.



