
Questions to understand the topic of the lecture

I Is it true that no quadratic form over a vector space of
characteristic two can be diagonalized?

I If there exists a symmetric bilinear form f that corresponds to
a given quadratic form g , then is f unique?

I How the coefficients of an analytic expression change if we
change the basis?

I Is it true that if a symmetric matrix A can be diagonalized by
RT AR, then R can always be chosen upper triangular?

I Is it true that when a quadratic form g on V over R has
diagonal matrix with some 1 and some −1, then there exist
vectors u,w ∈ V such that g(u) < 0 < g(w)?



Bilinear and quadratic forms
Definition: Let V be a vector space over a field K and let a
mapping f : V × V → K satisfies:
I ∀u, v ∈ V , ∀a ∈ K : f (au, v) = f (u, av) = af (u, v)
I ∀u, v ,w ∈ V : f (u + v ,w) = f (u,w) + f (v ,w)
I ∀u, v ,w ∈ V : f (u, v + w) = f (u, v) + f (u,w)

Then f is called a bilinear form on V .

A bilinear form is symmetric if ∀u, v ∈ V : f (u, v) = f (v ,u).

A mapping g : V → K is called a quadratic form, if there exists a
bilinear form f such that g(u) = f (u,u) for all u ∈ V .

Examples: Any inner product on a space over R, but not over C!
For V = Z2

5, a bilinear form:
f (u, v) = u1v1 + 2u1v2 + 4u2v1 + 3u2v2

The corresponding quadratic form:
g(u) = f (u,u) = u1u1 +2u1u2 +4u2u1 +3u2u2 = u2

1 + u1u2 +3u2
2



Matrices of forms
Definition: Let V be a vector space over a field K and let
X = (v1, . . . , vn) be its basis. The matrix of a bilinear form f w.r.t.
the basis X is the matrix B defined as bi ,j = f (vi , vj).
The matrix of a quadratic form g is the matrix of a symmetric
bilinear form f corresponding to g , if such symmetric f exists.
Example: For V = Z2

5, and the canonical basis K , the bilinear form

f (u, v) = u1v1 + 2u1v2 + 4u2v1 + 3u2v2 has matrix B =
(
1 2
4 3

)
and g(u) = u2

1 + u1u2 + 3u2
2 has matrix B =

(
1 3
3 3

)
On V = Z2

2 the quadratic form g(u) = u1u2 corresponds e.g. to

the bilinear form with matrix B =
(
0 1
0 0

)
but to no symmetric.

Observation: bi ,j = f (vi , vj) = 1
2(g(vi + vj)− g(vi)− g(vj))

Proof: g(vi + vj) = f (vi + vj , vi + vj)
= f (vi , vi) + f (vi , vj) + f (vj , vi) + f (vj , vj)

g(vi + vj)− g(vi)− g(vj) = f (vi , vj) + f (vj , vi)

Observation: The use of matrices of forms:
f (u, v) = [u]TX B[v ]X , g(u) = [u]TX B[u]X .

Proof: When u =
n∑

i=1
aivi and w =

n∑
j=1

bjvj , then

f (u,w) = f
( n∑

i=1
aivi ,

n∑
j=1

bjvj

)
=

n∑
i=1

n∑
j=1

ai f (vi , vj)bj = [u]TX B[w ]X
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Definition: The analytic expression of a bilinear form f over Kn

with matrix B is the homogeneous polynomial

f ((x1, . . . , xn)T , (y1, . . . , yn)T ) =
n∑

i=1

n∑
j=1

bi ,jxiyj

. . . analogously for quadratic forms and/or relative to a basis X .

Observation: Let B be a matrix of a b/q form w.r.t. a basis X .
Then [id ]TYX B[id ]YX is the matrix of the same form w.r.t. Y .

Proof: [u]X = [id ]YX [u]Y , [v ]X = [id ]YX [v ]Y ,
f (u, v) = [u]TX B[v ]X = ([id ]YX [u]Y )T B[id ]YX [v ]Y

= [u]TY [id ]TYX B[id ]YX [v ]Y .



Diagonalization of forms
Theorem: If g is a quadratic form on a vector space V of finite
dimension n over a field K other characteristics than 2, then the
form g allows a diagonal matrix B w.r.t. a suitable basis X .
(holds also for symmetric bilinear forms)
Rephrased in terms of matrices:
Theorem: For any symmetric matrix A ∈ Kn×n with char(K) 6= 2
there is a regular matrix R such that RT AR is diagonal.

Compare with the diagonalization of real symmetric matrices
of linear maps — R could indeed be orthogonal: RT = R−1, hence
RT AR = R−1AR. Columns of R (ON basis) are principal axes.

Example: No way to diagonalize
(
0 1
1 0

)
over Z2,

but over Z3 it is possible:
(
1 1
1 2

)(
0 1
1 0

)(
1 1
1 2

)
=
(
2 0
0 1

)



Theorem: For any symmetric matrix A ∈ Kn×n with char(K) 6= 2
there is a regular matrix R such that RT AR is diagonal.
Proof: By induction on n.

Denote A = An =
α aT

a Ã
.

If α 6= 0, let Pn =
1 − 1

αaT

0 In−1
.

Then PT
n AnPn =

1 0T

− 1
αa In−1

·
α aT

a Ã
·
1 − 1

αaT

0 In−1

=
α aT

0 − 1
αaaT + Ã

·
1 − 1

αaT

0 In−1
=

α 0T

0 An−1

where An−1 = Ã− 1
αaaT is symmetric.

with An−1 symmetric. By induction hypothesis
there exists Rn−1 for An−1. We choose Rn = Pn ·

1 0T

0 Rn−1
Then RT

n AnRn is diagonal.

If α = 0 but a 6= 0, then ai ,1 6= 0 for some i . Use the elementary
matrix E for adding the i-th column to the first. Take A′ = ET AE
instead of A. As α′ = 2ai ,1 6= 0, we may follow the previous case.

If α = 0 and a = 0, then let An−1 = Ã and get Rn =
1 0T

0 Rn−1
.
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Example: K = Z3, A3 =

2 2 1
2 0 2
1 2 1

, α = 2, P3 =

1 2 1
0 1 0
0 0 1

,

A2 = Ã− 1
α aaT =

(
0 2
2 1

)
− 1

2

(
2
1

)
(2, 1) =

(
1 1
1 2

)
, R2 =

(
1 2
0 1

)
,

R3 =

1 2 1
0 1 0
0 0 1

1 0 0
0 1 2
0 0 1

 =

1 2 2
0 1 2
0 0 1

, RT
3 A3R3 =

2 0 0
0 1 0
0 0 1


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Methods of diagonalization
I Real symmetric matrices can be diagonalized with

orthonormal eigenvectors.
I By Gaussian elimination — we perform each operation

simultaneously on both rows and columns.
Observation: If A is symmetric then A′ = ET AE is symmetric too.
Corollary: Lower triangular RT AR is diagonal.

Example:(2 2 1 1 0 0
2 0 2 0 1 0
1 2 1 0 0 1

)
II-I∼
row

(2 2 1 1 0 0
0 1 1 2 1 0
1 2 1 0 0 1

)
II-I∼
col.

(2 0 1 1 0 0
0 1 1 2 1 0
1 1 1 0 0 1

)

III+I∼
(2 0 0 1 0 0

0 1 1 2 1 0
0 1 2 1 0 1

)
III-II∼

(2 0 0 1 0 0
0 1 0 2 1 0
0 0 1 2 2 1

)

The diagonal matrix RT AR is on the left.
On the right is the matrix of row operations, i.e. RT .



Sylvester’s law of inertia
Theorem: Every quadratic form on a finitely generated real vector
space allows a diagonal matrix with only 1, −1 and 0.
Moreover, all such diagonal matrices corresponding to the same
form have the same number of 1’s and the same number of −1’s.

Definition: Let a real quadratic form g is represented by a diagonal
matrix B containing only 1, −1 and 0.
The signature of the form g is the triple (#1,#− 1,#0),
counted along the diagonal of the matrix B.

Example: g : R2 → R given by B =
(
0 3
3 −3

)
w.r.t. K .

The matrix of g w.r.t. the basis: X = {(2
3 ,

1
3)T , (−1

3 ,
1
3)T} is

B′ = [id ]TXK B [id ]XK =
( 2

3
1
3

−1
3

1
3

)(
0 3
3 −3

)(2
3 −1

3
1
3

1
3

)
=
(
1 0
0 −1

)

6x1x2 − 3x2
2 x2

1 − x2
2
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The six cases of diagonalized quadratic forms R2 → R

0 x2
1 −x2

1

x2
1 + x2

2 x2
1 − x2

2 −x2
1 − x2

2

(ordered by the rank and then 1 before −1)



Sylvester’s law of inertia
Theorem: Every quadratic form on a finitely generated real vector
space allows a diagonal matrix with only 1, −1 and 0.
Moreover, all such diagonal matrices corresponding to the same
form have the same number of 1’s and the same number of −1’s.
Proof:
1. Existence: Let B be the matrix of the form. w.r.t. some basis Y .
Real symmetric matrices can be diagonalized, i.e. any B = RT DR
for a regular R.
Split D as ST D′S where di ,i


= 0 d ′i ,i = 0, si ,i = 1
> 0 d ′i ,i = 1, si ,i =

√
di ,i

< 0 d ′i ,i = −1, si ,i =
√
−di ,i

Now SR is regular and B = (SR)T D′SR.
Choose the basis X , the coordinates of vectors of X w.r.t. Y are
the columns of SR, i.e. [id ]X ,Y = SR and also [id ]Y ,X = (SR)−1.
Now [id ]TY ,X B[id ]Y ,X = ((SR)−1)T (SR)T D′SR(SR)−1 = D′ is
the desired diagonal matrix of the form.

Example:

B =
( 7 −10−2
−10 4 8
−2 8 −2

)
=

 2
3

1
3

2
3

− 2
3

2
3

1
3

− 1
3 −

2
3

2
3

(18 0 0
0 −9 0
0 0 0

) 2
3 −

2
3 −

1
3

1
3

2
3 −

2
3

2
3

1
3

2
3

 = RT DR

D =
(18 0 0

0 −9 0
0 0 0

)
=

3
√

2 0 0
0 3 0
0 0 1

(1 0 0
0 −1 0
0 0 0

)3
√

2 0 0
0 3 0
0 0 1

 = ST D′S

[id ]X ,Y = SR =

3
√

2 0 0
0 3 0
0 0 1

 2
3 −

2
3 −

1
3

1
3

2
3 − 2

3
2
3

1
3

2
3

 =

2
√

2 −2
√

2 −
√

2
1 2 −2
2
3

1
3

2
3


B = RT DR = RT ST D′SR = (SR)T D′SR = [id ]TX ,Y D′[id ]X ,Y

⇐⇒ [id ]TY ,X B[id ]Y ,X = D′
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2. Uniqueness of the numbers of 1’s, −1’s (and hence also 0’s):
Let X = (u1, . . . ,un), Y = (v1, . . . , vn) be two bases s.t. the
corresponding matrices B and B′ of the form g are diagonal with
1’s, −1’s and 0’s ordered. s.t. 1’s are first, then −1’s and 0’s are
last.

As products with regular matrices [id ]XY do not change the rank:
#0’s in B = n − rank(B) = n − rank(B′) = #0’s in B′.

Let r = #1’s in B, s = #1’s in B′. If r > s, then consider the
subspaces L(u1, . . . ,ur ) and L(vs+1, . . . , vn). The sum of their
dimensions r + n − s exceeds n, hence they intersect nontrivially.

u1

Rn

ur
ur+1

v1

un

vs
vs+1

vn

X Y

L(u1, . . . ,ur )

L(vs+1, . . . , vn)
0 w

dim = n

dim = r

dim = n − s

dim ≥ 1

We use a fact from WT:
dim(U) + dim(V ) =
dim(U∩V ) + dim(L(U ∪ V ))

LHS is strictly bigger than n,
dim(L(U∪V )) ≤ dim(Rn) = n
=⇒ dim(U ∩ V ) ≥ 1

Choose w ∈ (L(u1, . . . ,ur ) ∩ L(vs+1, . . . , vn)) \ 0, thus
[w ]X = (x1, . . . , xr , 0, . . . , 0)T , [w ]Y = (0, . . . , 0, ys+1, . . . , yn)T .
Now g(w) = [w ]TX B[w ]X = x2

1 + · · ·+ x2
r > 0 (> as w 6= 0), but

g(w) = [w ]TY B′[w ]Y = −y2
s+1− . . .− y2

rank(B′) ≤ 0, contradiction.
Therefore r 6> s, by symmetry also s 6> r , hence r = s.
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Comments

Observation: Forms with real positive definite matrices are those
that could be diagonalized into In
— compare Cholesky factorization A = UHU = UT InU.

Observation: An analogous statement for complex symmetric forms
(other property than Hermitian!) yields diagonal matrices with 1’s
and 0’s on the diagonal; including the inertia.


