Jordan normal form

Example: The matrix <(1) i) is not diagonalizable in any field.

Proof: It has eigenvalue 1 of multiplicity two, hence could only be

similar to k. But for any regular R: RLR=1h # (é 1)



Jordan normal form

Example: The matrix <(1) i) is not diagonalizable in any field.

Al

Definition: A Jordan block is A
. =
a square matrix of the form 1
A

Theorem: Every square complex I
matrix A is similar to a matrix J J =
in the so called Jordan normal form Y

Each Jordan block Jy, corresponds to an eigenvalue \; of A.
A )\; may vyield several Jordan blocks, indeed of various sizes.

Fact: For each A, the number of blocks and their sizes are uniquely
determined by A. Hence the Jordan normal form of A is unique
upto a permutation of the Jordan blocks on the diagonal.

Observation: A diagonalizable matrix has Jordan blocks of size one.



Generalized eigenvectors
When A is diagonalizable, i.e. AR = RD,

then the columns of R are eigenvectors of A.
What can we say about matrices that are not diagonalizable?

Proposition: Let AR = RJ,.

If x; is the i-th column of R, then it satisfies (A — Al)'x; = 0.
Proof:

A 1
RJ, A 1
A
X1 Xo ... x,,‘)\xl X1+ AXo ... Xp—1+ AXp
AX1 = )\Xl = (A — )\I)Xl =0

Aox=x1+X 2 = (A-AM)xx=x1 = (A-AM)’xx=0

Ax,=xp_1+Xx, = (A—AN)x,=x-1 = (A—X)"x,=0



Generalized eigenvectors

When A is diagonalizable, i.e. AR = RD,
then the columns of R are eigenvectors of A.
What can we say about matrices that are not diagonalizable?
Proposition: Let AR = RJ,.
If x; is the i-th column of R, then it satisfies (A — Al)'x; = 0.

Definition: Generalized eigenvector of a matrix A for an eigenvalue
)\ is any vector x satisfying (A — Al)'x = 0 for some i € N.

They form chains xg, ..., X2, x1,0, where (A — \)x; = x;_1.
Analogously, for a linear map f we get f(x;) — A\x; = xj_1.
In another notation: x € ker((A — AI)), or x € ker((f — \id)").

Theorem: (equivalent version of Jordan's normal form theorem)
Each finitely generated space V over C and linear f : V — V has
a basis from chains of generalized eigenvectors of the map f.

Note: Also holds for any K, when eigenvalues have algebraic
multiplicity dim(V/), i.e. if pjs, (t) decomposes into linear terms.



Example

-1 7 -5
The matrix A= | —2 7 —4 ] is similar to a matrix in the
-1 3 -1 2 10
Jordan normal form with two blocks [0 2 0|, because
01

N W o
O N =
= O O

):RJ

=0 and
T—o.

= NN
==

-1 7 =5 3 21 2
AR=|-2 7 -4 2 2 1) = 0
-1 3 -1 1 11 0

(3,2,1)7 is an eigenvector for 2, i.e. (A —213)(3,2,1
(1,1,1)7 is an eigenvector for 1, i.e. (A —143)(1,1,1

The middle column of the matrix R however satisfies
A-(22,10)T =32, +2-(2,2,1)T =
(A—-2k) (2,2,1)T =(3,2,1)7T =
(A—-28K)%(2,2,1)T = (A-2K)(3,2,1)T = 0.

~— —



Proof of the theorem — Part 1

By induction on dim(V). For each eigenvalue A we introduce the
map gx(x) = f(x) — Ax. We fix some eigenvalue \ arbitrarily.

Since both f and id are linear maps, gn = f — Aid is also linear.
Denote W = gy(V), the range of the map g).

Since g is a linear map, W is a vector space. Indeed W is a
subspace of V/, because Vx € V : g\(x) = f(x) — Ax € V.

Next, dim(W) < dim(V') because the eigenvector u for \ satisfies
g\(x) =1f(x) — Ax =0, i.e. dim(ker(gr)) > 1 and thus

dim(V) = dim(gx(V)) + dim(ker(gy)) = dim(W) + dim(ker(gy))-
The map f can be restricted to W, since for gy(x) € W we have
flex(x)) = F(f(x) = Ax) = £(f(x)) — Af(x) = gr(f(x)) € W.
According to the inductive hypothesis for f and W, the subspace
W has a basis Y from chains of generalized eigenvectors of f.



Example for the first part of the proof

[er(gx) = YJ Y

-17 - —37-5 10-3
For [flk k = <_§7 i) A=2is [g@lkk = <Zf§:§> o (8(1)_02>
Z =1{(3,2,1)7} is a basis of ker(g») so dim(W) =3 —-1=2.

When we extend Z by e!, e? to a basis of V, we get
{g(et), g2(e?)} = {(-3,-2,-1)7,(7,5,3)7} as a basis of W.
Note that W N ker(gz) # ). This intersection has dimension 1.

There are two chains that form the basis Y of the subspace W:
the first is (3,2,1)7 for A = 2 and the next is (1,1,1)7 for A = 1.
(Both have length one, so they contain "ordinary" eigenvectors.)



Proof of theorem — Part 2
Denote d = dim(ker(gy)) and d’ = dim(ker(gy) N W).

Arrange the basis Y into r strings so that the first d’ corresponds

to A\ and others correspond to the other eigenvalues \',... "

1 8 1 1 0

Yihb, — — Y2 — Yi
2 2 2

Yo — =+ — ¥ — yi — 0

d' d' :

Yi, — 0 N — 0
d+1 &/, = &x d+1 8

Yy — 7 N — 0

B/t )

yi =0

As chains of Y are in W, we can extend each of the first d’ chains
by some x’ € V so that g\(x) =y forie {1,...,d"}.
The vectors yi, ..., 1‘” form the basis of the space ker(gy) N W.

Complete them by z*,...,z%~? to a basis of ker(gy) (other than
Z) and get d — d’ new chains of length 1 formed by z!,..., z9~ 9"



That yields chains

Xy = oy — o =0
x9 = y,‘j’;, oy 0
d'+1 8\ ) 8/ d'+1 8
Ky — ¥ — 0
In our example: ey gt 0
(2v2v1)T — (37271)T — 0 Zl — 0
(1,1,1)7 & 0 / :
We have no z' because d = d’ = 1. z=4 0

We added d = dim(ker(gy)) vectors to the basis of W,
so in total we have as many as is the dimension of the space V.

We show that they are linearly independent and therefore they
form a basis of the space V.



vV xl.x9

@ w f w
ker(gx) Y- y‘,f;l. .yL'YJ Y
E 28" d'Ly%..y‘f..y{

yi--Y

Consider a linear combination Z aix' + Z bijyl +> iz’ = 0.

Since 0 = g,(0) = g\ (Za,x —I—Zb,dyj —i—Zc, ) Zbuyj
where the vectors yj I

are linearly independent, | @i fori<d.,j=k
bij+1 fori<d,j<k
()\* - /\)b,‘J for i > d/,j = ki
(X‘< — )\)b,‘J + b,"j+1 for i > d,,_j < ki

we must have 0 = b} ; =
where \* # )\ matches
the i-th chain.

It follows from gy (x') = y,; and g,\(yj') = yjfl for i < d’; while for
i>dg(y) = f(¥i) — i =Xy — Ayi = (\* — A\)yj and for
j > 1 also: gA(yJ) f( ) /\yj = f(yj) .—)\*yj + (A" =Ny =
() + (N =Ny =y + (N = Ny}



v oxlx?

(2 w (2 w
ker(gx) || vk, .. y‘,f;l. .yLyYJ Y
228 (ol i )ov

yi--Y

Consider a linear combination Z ajx' + Z b,-JyJ!' +3 cizi = 0.

Since 0 = g)(0) = gy <Z aix’ + E buyj + Z ciz ) Z b,JJG
where the vectors yj I

are linearly independent, | ai fori<d'j=ki
biji1 for i < d',j <k
(N — N)bi for i > d',j = ki
(X‘< — )\)b,‘J + b,"j+1 for i > d/,_j < ki

we must have 0 = b} ; =

where \* # )\ matches
the i-th chain.

The first case gives: Vi : a; = 0, the next: Vi < d’,Vj > 1: b;j =0
and the other two: Vi > d’,Vj : bj j = 0. In the combination, only

the coefficients b; 1 fori < d’ and ¢; remain, but they are also zero,
since the vectors yll, . ,yld/, zt ... ,zd_d/ form a basis of ker(gy).



Calculation of chains corresponding to A

Notation: Map gj\ = g\0g\0 - 0g) ... corresponds to
i
Procedure: ix gl (A—AD)
A
T
Xk Xif1 Xj X2 X1 0
X! x5 = xp =0
Vi
Rk R,'Jrl R,' R2 Rl

» We determine the sequence of spaces Vi C Vo C --- C V,,
where V; = ker(g]) and k = min{i : ker(g}) = ker(gi")}.
» We set Ry 1 = () and for i from k to 1:
» calculate the set g\(Ri11)
. we extend the already establlished chains
» and extend it by vectors from V;\ V;_; to a linearly
independent set R; of size dim(V;) — dim(V;_1)
. we add to R; the beginnings of new chains
A Jordan cell of size i corersponds to a chain that begins some
x; € R\ gx(Ri+1) followed by its images x;_; = gi(x;) € Ri_;.



Example

2 .36 2 -3 -2 -8 PA(t) =

-2 0 4 0 -1 -1 —4

001 1 0 3 —1-1| =t —6t°4+15¢5—20t*+15t> —6t>+t
A= 2 2 —4 0 4 1 4 6

1 0 20 1 1 2 — . (f—

-2 -3 4 1 -4 1 -5 =t (t 1)

23 72 % %/ Figenvalues are Ay = 0 and )\, = 1.

Since the algebraic multiplicity of A1 is 1, it has geometric
multiplicity 1 as well and it corersponds to a Jordan cell of size 1.

Bn (0,0,1,1,0,0,1)" —0

We choose an eigenvector x; — (0,0,1,1,0,0,1)" for A;.



Example

Bn (0,0,1,1,0,0,1)" —=0
[ X} [ X} x5 X} 0
Ve Vs 1 XY x| 0
Va v
dim(V4) =7 -5 =2,
. -3 -3 6 2 -3 -2 -8
The matrix PSSO The eigenvalue A\, = 1

N

— A_ — 2 —4 -1 4 1 4
B=A-XxFk 22 e thus corresponds to

2 -3 4 1 —4 0 -5
has rank 5. P two Jordan cels,
i.e. to two chains.

The chain lengths can be derived from dimensions of V5, V3, ...
rank(B?) = 3 = dim(V2) = 4 = both chains have length at least 2
rank(B3) = 2 = dim(V3) = 5 = one lenght is 2 and the other 4.

00 O0O0O0OOU 0OTO 0

01 10000

. 0011000

Jordan normal formis J = oo o0 1 10 0
00 0O0OT1O00O0

00 0O0O0 1 1

00 0 O0O0O0O 1



Example — calculation of generalized eigenvectors

S (0,0,1,1,0,0,1)7 —0
[(1,0‘0,0,0.0.0){(73,72.0,2,1,72.2)T (4,1,1,-2,-1,0,-1)"(-2,0,-1,0,0,0,0)" 0
Vy Vs 1 (0,0,0,3,-1,—4,2)"—(1,-3,-1,-3,0,-3,0)"F 0

Vo Vi

Choose e.g. x; = (1,0,0,0,0,0,0)" € V4, then

xt = gy, (x}) = Bx;, = (—3,-2,0,2,1,-2,2)" € V5 and

Xi = () = Bxs — (1.1,1,-2,-1,0,-1)T € V5.
Choose vector x) € V5 \ V; linearly independent on x}

(we show later how), e.g. x} = (0,0,0,3, —1, —4,2)".

Now x| = gy,(x5) = Bx, = (-2,0,-1,0,0,0,0)" € \;
and x|/ = g),(x)) = Bx{ = (1,-3,-1,-3,0,-3,0)" € \.

The desired regular matrix R for AR = RJ is

0 -2 4 -31 1 0

N T T S B 00 1 —20 -3 0

1 -1 1 0 0 -1 0

R = X1 X:/l Xé Xé Xﬁll X{/ Xé/ = é g :i i 8 ,03 31
‘ | ‘ | | | ‘ 0 0 0 -2 0 —3 —4

10 -1 2 0 0 2



Example — choice of x/
Calculate the basis of V5, i.e. of the space ker(B?).

4 4 -8 —2 6 2 10
1 2 -2 -1 3 0 3
1 -1 -2 0 —-22 3 10 -200 1 2
B2=| -2-54 2 81 -5|~~ (010 02-1-1 = ker(B?) =
-1 -2 2 1 —-30 -3 00 0 11 -1 -3
0 0 0 0 0 0 O
-1 -3 2 1 —-51 =2
= £((-2,0,-1,0,0,0,0)7,(0,2,0,1,-1,0,0",(1,-1,0, 1,0, 1,07, (2, 1,0, =3,0,0, —1)7)

Put the basis row-wise into a matrix and transform it to a echelon form.

-2 0 -1 0 0 0 O 000 -2 —5 1
0 2 0 1 -1 0 0 0:00 -1 2 -1 _ 4
1 -1 0 -10 —-10 ]~ ™V oo 04 10 —2)7"™"
2 -1 0 -3 0 0 -1 0003 —1 —4 2

Do the same for the space V;, where we add x} to the basis.
-3 -3 6 2 -3 -2 -8

-2 -1 4 0 -1 -1 —4 10-200 1 0
o 1 0 0 3 -1 -1 01 0 00 -10
B = 2 2 —4 -1 4 1 4 ~~ 00 0 10-10 =
1 0 -2 0 0 1 2 00 0 01 0 O
—2 -3 4 1 —4 0 -5 00 0 00 0 1

2 3 —4-15 0 4
ker(B) = £((2,0,—1,0,0,0,0)",(1,—1,0, —1,0, —1,0)"

-1 0 0 0 O 00 -3 -1 -1 —1
0O 1 —-10 0 ~~ | 0 00 -1 2 —-1|=M
1 -2 —-10 -1 00 6 2 2 2

The row of My with pivot in another column, that M, is xI.

so |
N
=N O



