
Similar matrices
The matrix of a linear map f on V is not unique, since it depends
on the basis. Matrices of the same map, but w.r.t. different bases
shall have the same eigenvalues.

[f ]XX = [id ]YX [f ]YY [id ]XY

[f (u)]X = [f ]XX [u]X
= [id ]YX [f (u)]Y = [id ]YX [f ]YY [u]Y
= [id ]YX [f ]YY [id ]XY [u]X

Note that [id ]YX = [id ]−1
XY

Definition Matrices A,B ∈ Kn×n are similar if there exists a
regular matrix R such that A = R−1BR.
Observation: If A is similar to B, i.e. B = RAR−1,
and an eigenvalue λ corresponds to an eigenvector x in A,
then λ is also an eigenvalue of B and corresponds here to Rx.
Proof: For y = Rx holds: By = RAR−1Rx = RAx = λRx = λy .
Observation: If B = RAR−1 then pB(t) = pA(t).
Proof: pB(t) = det(B − tI) = det(RAR−1 − R(tI)R−1) =
det(R(A− tI)R−1) = det(R) det(A− tI) det(R−1) = pA(t)
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Example — a linear map in the plane
Does the following linear map have a better description?

e1

e2

f (e2)

f (e1)

[f ]KK =

(
0 2
−1 3

)

Characteristic polynomial:

p[f ]KK (t) =
∣∣∣∣∣−t 2
−1 3− t

∣∣∣∣∣ = t2 − 3t + 2 = (t − 1)(t − 2)

The eigenvalue λ1 = 1 has eigenvector x1 = (2, 1)T , and
the eigenvalue λ2 = 2 has eigenvector x2 = (1, 1)T .



With respect to the new basis X = {x1, x2} = {(2, 1)T , (1, 1)T}
the matrix of the same linear map f is diagonal:

[f ]XX = [id ]KX [f ]KK [id ]XK =
(
2 1
1 1

)−1(
0 2
−1 3

)(
2 1
1 1

)
=
(
1 0
0 2

)

x1

x2
= f (x1)

[f ]XX =

(
1 0
0 2

)f (x2)

Less formally: the plane is fixed along the line through x1
and twice stretched along the line through x2.

Observe that the eigenvalues and eigenvectors are preserved.



Algebraic and geometric multiplicity
Observation: If a basis X contains an eigenvector x of f , then the
coordinate corresponding to x is scaled by λ under f .
In matrix terms: [f ]XX contains in the column corresponding to x
only λ at the diagonal and otherwise zeroes.

Proof: When an eigenvector u is the i-th vector of a basis X ,
then the i-th column of [f ]XX is [f (u)]X = [λu]X = λ[u]X = λe i .

Theorem: The geometric multiplicity of an eigenvalue λ
of a matrix A is smaller or equal to its algebraic multiplicity.

Proof: View A ∈ Kn×n as the matrix of a linear map f : Kn → Kn

w.r.t. the standard basis K , i.e. A = [f ]K ,K .
Let u1, . . . ,uk be a basis of the space of eigenvectors of λ, i.e. k is
its geometric multiplicity.
Extend this basis to a basis X of Kn.
Then [f ]X ,X = [id ]−1

X ,K A[id ]X ,K is similar to A. Also [f ]X ,X has on
the first k columns λ at the diagonal and otherwise zeroes.
Hence (λ− t)k divides p[f ]X ,X (t). Since A and [f ]X ,X have equal
characteristic polynomials, λ has algebraic multiplicity at least k.
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Example

A =

−1 7 −5
−2 7 −4
−1 3 −1

 pA(t) = −t3 + 5t2− 8x + 4 = (t − 2)2(t − 1)
eigenvalues are: 2 of algebraic multiplicity 2
and 1 of algebraic multiplicity 1.

A− 2I3 =

−3 7 −5
−2 5 −4
−1 3 −3

 ∼∼
1 0 −3
0 1 −2
0 0 0


The eigenvalue 2 has in A geometric multiplicity only 1.
We extend the eigenvector (3, 2, 1)T for 2 to a basis X ,
e.g. X = {(3, 2, 1)T , (2, 2, 1)T , (1, 1, 1)T}.

The matrix A is similar to [id ]−1
X ,K A[id ]X ,K =

=

3 2 1
2 2 1
1 1 1


−1−1 7 −5

−2 7 −4
−1 3 −1


3 2 1
2 2 1
1 1 1

 =

2 1 0
0 2 0
0 0 1



Compare with,

B =

2 1 −2
0 3 −2
0 1 0


has the same characteristic polynomial
pB(t) = −t3 + 5t2− 8x + 4 = (t − 2)2(t − 1)
and the same eigenvalues, i.e. 2 of algebraic
multiplicity 2 and 1 of algebraic multiplicity 1.

W.r.t. (by coincidence the same) basis X we get [id ]−1
X ,K B[id ]X ,K =

=

3 2 1
2 2 1
1 1 1


−12 1 −2

0 3 −2
0 1 0


3 2 1
2 2 1
1 1 1

 =

2 0 0
0 2 0
0 0 1
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Diagonalization

Observation: A matrix A ∈ Kn×n is similar to a diagonal matrix if
and only if Kn has a basis consisting of eigenvectors of A.

Proof: AR = RD with diagonal matrix D, iff for every i there
exists a vector x (the i-th column of R) such that Ax = λx = diix.

λx

x

R

A

λ

D

R

0

0

λxx

A = RDR−1 ⇐⇒ AR = RD ⇐⇒ R−1AR = D

Definition: A matrix similar to a diagonal matrix is diagonalizable.

Corollary: If a square matrix of order n has n distinct eigenvalues,
then it is diagonalizable.

Corollary: When pA(t) =
∏

i(t − λi)ri , then:

A is diagonalizable ⇐⇒ dim(Ker(A− λi I)) = ri

Corollary: If A = R−1DR, then for any k : Ak = R−1DkR.
Ak = (R−1DR)k = R−1DRR−1DRR−1 · · ·R−1DR = R−1DkR.
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Jordan normal form
Example: The matrix

(
1 1
0 1

)
is not diagonalizable in any field.

Proof: It has eigenvalue 1 of multiplicity two, hence could only be

similar to I2. But for any regular R: R−1I2R = I2 6=
(
1 1
0 1

)
.

Definition: A Jordan block is
a square matrix of the form Jλ =


λ 1

λ
. . .
. . . 1

λ


Theorem: Every square complex
matrix A is similar to a matrix J
in the so called Jordan normal form

J =

Jλ1
. . .

Jλk


Each Jordan block Jλi corresponds to an eigenvalue λi of A.
A λi may yield several Jordan blocks, indeed of various sizes.
Fact: For each λ, the number of blocks and their sizes are uniquely
determined by A. Hence the Jordan normal form of A is unique
upto a permutation of the Jordan blocks on the diagonal.
Observation: A diagonalizable matrix has Jordan blocks of size one.
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Generalized eigenvectors
When A is diagonalizable, i.e. AR = RD,

then the columns of R are eigenvectors of A.
What can we say about matrices that are not diagonalizable?

Proposition: Let AR = RJλ.
If xi is the i-th column of R, then it satisfies (A− λI)ixi = 0.
Proof:

λ 1
RJλ λ . . . 1

λ

x1 x2 . . . xn λx1 x1 + λx2 . . . xn−1 + λxn

Ax1 = λx1 ⇒ (A− λI)x1 = 0
Ax2 = x1 + λx2 ⇒ (A− λI)x2 = x1 ⇒ (A− λI)2x2 = 0

...
Axn = xn−1 + λxn ⇒ (A− λI)xn = xn−1 ⇒ (A− λI)nxn = 0

Definition: Generalized eigenvector of a matrix A for an eigenvalue
λ is any vector x satisfying (A− λI)kx = 0 for some k ∈ N.
Can be ordered into chains . . . , x2, x1,0, where (A− λI)xi = xi−1.
Analogously, for a linear map f we get f (xi)− λxi = xi−1.
In another notation: x ∈ ker((A− λI)k), or x ∈ ker((f − λid)k).
Theorem: (equivalent version of Jordan’s normal form theorem)
Each finitely generated space V over C and linear f : V → V has
a basis from chains of generalized eigenvectors of the map f .
Note: Also holds for any K, when eigenvalues have algebraic
multiplicity dim(V ), i.e. if p[f ]X ,X (t) decomposes into linear terms.
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Example

The matrix A =

−1 7 −5
−2 7 −4
−1 3 −1

 is similar to a matrix in the

Jordan normal form with two blocks

2 1 0
0 2 0
0 0 1

, because
AR =

−1 7 −5
−2 7 −4
−1 3 −1

3 2 1
2 2 1
1 1 1

 =

3 2 1
2 2 1
1 1 1

2 1 0
0 2 0
0 0 1

 = RJ

(3, 2, 1)T is an eigenvector for 2, i.e. (A− 2I3)(3, 2, 1)T = 0 and
(1, 1, 1)T is an eigenvector for 1, i.e. (A− 1I3)(1, 1, 1)T = 0.

The middle column of the matrix R however satisfies
A · (2, 2, 1)T = (3, 2, 1)T + 2 · (2, 2, 1)T =⇒
(A− 2I3) (2, 2, 1)T = (3, 2, 1)T =⇒
(A− 2I3)2(2, 2, 1)T = (A− 2I3)(3, 2, 1)T = 0.



Proof of the theorem — Part 1
By induction on dim(V ). For each eigenvalue λ we introduce the
map gλ(x) = f (x)− λx. Fix some eigenvalue λ.
Consider W = gλ(V ), the range of gλ.
W is a subset of V , because ∀x ∈ V : gλ(x) = f (x)− λx ∈ V .
W is a subspace because for u, v ∈W , α ∈ C exist x, y ∈ V
s.t. u = gλ(x) = f (x)− λx and v = gλ(y) = f (y)− λy and:
u + v = gλ(x) + gλ(y) = f (x + y)− λ(x + y) = gλ(x + y) ∈W .
αu = αgλ(x) = α(f (x)− λx) = f (αx)− λ(αx) = gλ(αx) ∈W .
Next, dim(W ) < dim(V ) because the eigenvector u for λ satisfies
gλ(x) = f (x)− λx = 0, i.e. dim(ker(gλ)) ≥ 1 and thus
dim(V ) = dim(gλ(V )) + dim(ker(gλ)) = dim(W ) + dim(ker(gλ)).
The mar f can be restricted to W , because for gλ(x) ∈W we have
f (gλ(x)) = f (f (x)− λx) = f (f (x))− λf (x) = gλ(f (x)) ∈W .
According to the inductive hypothesis for f and W , the subspace
W has a basis Y from chains of generalized eigenvectors of f .



Example for the first part of the proof

V
Wf gλ

ker(gλ) Y
x→ f (x)− λx

f W

Y

For [f ]K ,K =
(
−1 7 −5
−2 7 −4
−1 3 −1

)
aλ = 2 is [g2]K ,K =

(
−3 7 −5
−2 5 −4
−1 3 −3

)
∼∼

(
1 0 −3
0 1 −2
0 0 0

)
Z = {(3, 2, 1)T} is a basis of ker(g2) so dim(W ) = 3− 1 = 2.
When we extend Z by e1, e2 to a basis of V , we get
{g2(e1), g2(e2)} = {(−3,−2,−1)T , (7, 5, 3)T} as a basis of W .
Note that W ∩ ker(g2) 6= ∅. This intersection has dimension 1.
There are two chains that form the basis Y of the subspace W :
the first is (3, 2, 1)T for λ = 2 and the next is (1, 1, 1)T for λ = 1.
(Both have length one, so they contain "ordinary" eigenvectors.)



Proof of theorem — Part 2
Denote d = dim(ker(gλ)) and d ′ = dim(ker(gλ) ∩W ).
Arrange the basis Y into r strings so that the first d ′ corresponds
to λ and others correspond to the other eigenvalues λ′, . . . , λ′···′:

y1
k1

gλ−→ · · · · · · · · · gλ−→ y1
2

gλ−→ y1
1

gλ−→ 0
y2

k2

gλ−→ · · · gλ−→ y2
2

gλ−→ y2
1

gλ−→ 0...
yd ′

kd′

gλ−→ · · · gλ−→ yd ′
1

gλ−→ 0
yd ′+1

kd′+1

gλ′−−→ · · · gλ′−−→ yd ′+1
1

gλ′−−→ 0...
· · · y r

1
gλ′···′−−−→ 0

As chains of Y are in W , we can extend each of the first d ′ chains
by some x i ∈ V so that gλ(x i) = y i

ki
for i ∈ {1, . . . , d ′}.

The vectors y1
1 , . . . , yd ′

1 form the basis of the space ker(gλ) ∩W .
Complete them by z1, . . . , zd−d ′ to a basis of ker(gλ) (other than
Z ) and get d − d ′ new chains of length 1 formed by z1, . . . , zd−d ′ .



That yields chains

x1 gλ−→ y1
k1

gλ−→ · · · gλ−→ y1
2

gλ−→ y1
1

gλ−→ 0...
xd ′ gλ−→ yd ′

kd′

gλ−→ · · · gλ−→ yd ′
1

gλ−→ 0
yd ′+1

kd′+1

gλ′−−→ · · · gλ′−−→ yd ′+1
1

gλ′−−→ 0...
· · · y r

1
gλ′···′−−−→ 0

z1 gλ−→ 0...
zd−d ′ gλ−→ 0

In our example:

(2, 2, 1)T g2−→ (3, 2, 1)T g2−→ 0
(1, 1, 1)T g1−→ 0

We have no z i because d = d ′ = 1.

We added d = dim(ker(gλ)) vectors to the basis of W ,
so in total we have as many as is the dimension of the space V .

We show that they are linearly independent and therefore they
form a basis of the space V .



V
Wf gλ

ker(gλ) Y
x→ f (x)− λx

f

y11. . y
r
kr

. . yrkr

z11. . z
d−d′

1

x1. . xd
′

y1k1 . . y
d′

kd′

W

Y

. . yr1y11 . . y
d′

1

Consider a linear combination
∑
i

aix i +
∑
i

bi ,jy i
j +

∑
i

ciz i = 0.

Since 0 = gλ(0) = gλ

(∑
i

aix i +
∑
i ,j

bi ,jy i
j +

∑
i

ciz i
)

=
∑
i ,j

b′i ,jy i
j ,

where the vectors y i
j

are linearly independent,

we must have 0 = b′i ,j =


ai for i ≤ d ′, j = ki

bi ,j+1 for i ≤ d ′, j < ki

(λ∗ − λ)bi ,j for i > d ′, j = ki

(λ∗ − λ)bi ,j + bi ,j+1 for i > d ′, j < ki
where λ∗ 6= λ matches
the i-th chain.
It follows from gλ(x i) = y i

ki
and gλ(y i

j ) = y i
j−1 for i ≤ d ′; while for

i > d ′ : gλ(y i
1) = f (y i

1)− λy i
1 = λ∗y i

1 − λy i
1 = (λ∗ − λ)y i

1 and for
j > 1 also: gλ(y i

j ) = f (y i
j )− λy i

j = f (y i
j )− λ∗y i

j + (λ∗ − λ)y i
j =

gλ∗(y i
j ) + (λ∗ − λ)y i

j = y i
j−1 + (λ∗ − λ)y i

j .

The first case gives: ∀i : ai = 0, the next: ∀i ≤ d ′,∀j > 1 : bi ,j = 0
and the other two: ∀i > d ′,∀j : bi ,j = 0. In the combination, only
the coefficients bi ,1 fori ≤ d ′ and ci remain, but they are also zero,
since the vectors y1

1 , . . . , yd ′
1 , z1, . . . , zd−d ′ form a basis of ker(gλ).
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