Similar matrices
The matrix of a linear map f on V is not unique, since it depends

on the basis. Matrices of the same map, but w.r.t. different bases
shall have the same eigenvalues.
[flxx = lid]yx[flvylid]xy

[f(w)lx = [flxx[ulx
= [idlyx[f(u)ly = [id]yx[f]yy[uly

= [id]lyx[flyylid]xy[u]x

Note that [id]yx = [’d];&



Similar matrices

The matrix of a linear map f on V is not unique, since it depends
on the basis. Matrices of the same map, but w.r.t. different bases
shall have the same eigenvalues.

[flxx = [id]yx[flyylid]xy
Definition Matrices A, B € K"*" are similar if there exists a

regular matrix R such that A= R™!BR.

Observation: If A is similar to B, i.e. B= RAR™1,
and an eigenvalue \ corresponds to an eigenvector x in A,
then X is also an eigenvalue of B and corresponds here to Rx.

Proof: For y = Rx holds: By = RAR"!Rx = RAx = ARx = )\y.
Observation: If B = RAR™! then pg(t) = pa(t).

Proof: pg(t) = det(B — tl) = det(RAR™! — R(t )R =
det(R(A — tI)R™ 1) = det(R) det(A — tl)det(R™1) = pa(t)



Example — a linear map in the plane

Does the following linear map have a better description?

7 e
f(e1)
Characteristic polynomial:

—t 2

P (£) = ’_1 3_ 4= t? —3t+2=(t —1)(t — 2)

The eigenvalue \; = 1 has eigenvector x; = (
the eigenvalue A\, = 2 has eigenvector xp = (

=N
==



With respect to the new basis X = {x1,x} = {(2,1)7,(1,1)7}

the matrix of the same linear map f is diagonal:

[flxx = [id]kx[flkklid]xk = (i i) <_01 §> (i 1) - ((IJ g)

Less formally: the plane is fixed along the line through x;
and twice stretched along the line through x».

Observe that the eigenvalues and eigenvectors are preserved.



Algebraic and geometric multiplicity

Observation: If a basis X contains an eigenvector x of f, then the
coordinate corresponding to x is scaled by A under f.

In matrix terms: [f]xx contains in the column corresponding to x
only A at the diagonal and otherwise zeroes.

Proof: When an eigenvector u is the i-th vector of a basis X,
then the i-th column of [f]xx is [f(u)]x = [Mu]x = A[u]x = \e'.



Algebraic and geometric multiplicity

Observation: If a basis X contains an eigenvector x of f, then the
coordinate corresponding to x is scaled by A under f.

In matrix terms: [f]xx contains in the column corresponding to x
only A at the diagonal and otherwise zeroes.

Theorem: The geometric multiplicity of an eigenvalue A
of a matrix A is smaller or equal to its algebraic multiplicity.

Proof: View A € K™ as the matrix of a linear map  : K7 — K"
w.r.t. the standard basis K, i.e. A = [f]k k.

Let uy, ..., ux be a basis of the space of eigenvectors of A, i.e. k is
its geometric multiplicity.

Extend this basis to a basis X of K".

Then [f]x.x = [id]x % Alid]x i is similar to A. Also [f]x x has on
the first k columns A at the diagonal and otherwise zeroes.

Hence (A — t)X divides Piflx x(t)- Since A and [f]x x have equal
characteristic polynomials, A has algebraic multiplicity at least k.



Example
-1 7 =5\ pa(t)=—t3+5t2—-8x+4=(t—2)*(t—1)

A= | -2 7 —4]| eigenvalues are: 2 of algebraic multiplicity 2
—1 3 —1) and 1 of algebraic multiplicity 1.
-3 7 -5 1 0 -3
A-2L=|-25 —a|l~~|0 1 —2
-1 3 -3 0 0 O

The eigenvalue 2 has in A geometric multiplicity only 1.

We extend the eigenvector (3,2,1)7 for 2 to a basis X,
eg. X={(3,2,1)7,(2,2,1)7,(1,1,1)"}.

The matrix A is similar to [id] Alid]x x =

K
32 1\ ' /217 =5\ /3 21 210
—l2 21 27 4|2 2 1]=(02 o0
111 13 —-1)\1 1 1 00 1



Example
-1 7 =5\ pa(t)=—t3+5t2—-8x+4=(t—2)*(t—1)

A= | -2 7 —4]| eigenvalues are: 2 of algebraic multiplicity 2
—1 3 —1/ and 1 of algebraic multiplicity 1.
-3 7 -5 1 0 -3
A-2b=|-25 —4|~~|0 1 -2
-1 3 -3 0 0 O

The eigenvalue 2 has in A geometric multiplicity only 1.

Compare with, has the same characteristic polynomial

pe(t) = —t3+5t2 —8x+4 = (t—2)*(t—1)

B = and the same eigenvalues, i.e. 2 of algebraic

multiplicity 2 and 1 of algebraic multiplicity 1.
01 -2 01 -2
B-2h=(01 -2|~~ |0 0 O
01 -2 0 0 O

the eigenvalue 2 has in B geometric multiplicity 2.



Example
-1 7 =5\ pa(t)=—t3+5t2—-8x+4=(t—2)*(t—1)

A= | -2 7 —4]| eigenvalues are: 2 of algebraic multiplicity 2
—1 3 —1/ and 1 of algebraic multiplicity 1.
-3 7 -5 1 0 -3
A-2b=|-25 —4|~~|0 1 -2
-1 3 -3 0 0 O

The eigenvalue 2 has in A geometric multiplicity only 1.

Compare with, has the same characteristic polynomial

2 1 =2\ pg(t)=—-t3+5t2-8x+4=(t—2)(t—1)
B=]0 3 -2 and the same eigenvalues, i.e. 2 of algebraic
01 0 multiplicity 2 and 1 of algebraic multiplicity 1.

W.r.t. (by coincidence the same) basis X we get [id];}KB[id]X,K =

r.t.

32 1\ /21 -2\ /321 200
2 2 1 03 —2|[2 2 —lo 2 o0
111 1 00 1

O N O



Diagonalization

Observation: A matrix A € K"*" is similar to a diagonal matrix if
and only if K” has a basis consisting of eigenvectors of A.

Proof: AR = RD with diagonal matrix D, iff for every i there
exists a vector x (the i-th column of R) such that Ax = A\x = d;x.

R D \ 0

AX X AX

A=RDR! <= AR=RD <= R !AR=D



Diagonalization

Observation: A matrix A € K"*" is similar to a diagonal matrix if
and only if K” has a basis consisting of eigenvectors of A.

Proof: AR = RD with diagonal matrix D, iff for every i there
exists a vector x (the i-th column of R) such that Ax = A\x = d;x.

Definition: A matrix similar to a diagonal matrix is diagonalizable.

Corollary: If a square matrix of order n has n distinct eigenvalues,
then it is diagonalizable.

Corollary: When pa(t) = [1;(t — Ai)", then:
A is diagonalizable <= dim(Ker(A — \jl)) = r;

Corollary: If A= R™1DR, then for any k : Ak = R"1D*R.
A= (R'DR)k = R7'D D - 'DR = R™1DKR.



Jordan normal form

Example: The matrix <(1) i) is not diagonalizable in any field.

Proof: It has eigenvalue 1 of multiplicity two, hence could only be

similar to k. But for any regular R: RLR=1h # (é 1)



Jordan normal form

Example: The matrix <(1) i) is not diagonalizable in any field.

Al

Definition: A Jordan block is A
. =
a square matrix of the form 1
A

Theorem: Every square complex I
matrix A is similar to a matrix J J =
in the so called Jordan normal form Y

Each Jordan block Jy, corresponds to an eigenvalue \; of A.
A )\; may vyield several Jordan blocks, indeed of various sizes.

Fact: For each A, the number of blocks and their sizes are uniquely
determined by A. Hence the Jordan normal form of A is unique
upto a permutation of the Jordan blocks on the diagonal.

Observation: A diagonalizable matrix has Jordan blocks of size one.



Generalized eigenvectors
When A is diagonalizable, i.e. AR = RD,

then the columns of R are eigenvectors of A.
What can we say about matrices that are not diagonalizable?

Proposition: Let AR = RJ,.

If x; is the i-th column of R, then it satisfies (A — Al)'x; = 0.
Proof:

A 1
RJ, A 1
A
X1 Xo ... x,,‘)\xl X1+ AXo ... Xp—1+ AXp
AX1 = )\Xl = (A — )\I)Xl =0

Aox=x1+X 2 = (A-AM)xx=x1 = (A-AM)’xx=0

Ax,=xp_1+Xx, = (A—AN)x,=x-1 = (A—X)"x,=0



Generalized eigenvectors

When A is diagonalizable, i.e. AR = RD,
then the columns of R are eigenvectors of A.
What can we say about matrices that are not diagonalizable?
Proposition: Let AR = RJ,.
If x; is the i-th column of R, then it satisfies (A — Al)'x; = 0.

Definition: Generalized eigenvector of a matrix A for an eigenvalue
A is any vector x satisfying (A — AI)*x = 0 for some k € N.

Can be ordered into chains ..., x2, x1,0, where (A — A)x; = x;_1.
Analogously, for a linear map f we get f(x;) — Ax; = xj_1.
In another notation: x € ker((A — M)X), or x € ker((f — \id)¥).

Theorem: (equivalent version of Jordan's normal form theorem)
Each finitely generated space V over C and linear f : V — V has
a basis from chains of generalized eigenvectors of the map f.

Note: Also holds for any K, when eigenvalues have algebraic
multiplicity dim(V/), i.e. if pjs, ,(t) decomposes into linear terms.



Example

-1 7 -5
The matrix A= | —2 7 —4 ] is similar to a matrix in the
-1 3 -1 2 10
Jordan normal form with two blocks [0 2 0|, because
01

N W o
O N =
= O O

):RJ

=0 and
T—o.

= NN
==

-1 7 =5 3 21 2
AR=|-2 7 -4 2 2 1) = 0
-1 3 -1 1 11 0

(3,2,1)7 is an eigenvector for 2, i.e. (A —213)(3,2,1
(1,1,1)7 is an eigenvector for 1, i.e. (A —143)(1,1,1

The middle column of the matrix R however satisfies
A-(22,10)T =32, +2-(2,2,1)T =
(A—-2k) (2,2,1)T =(3,2,1)7T =
(A—-28K)%(2,2,1)T = (A-2K)(3,2,1)T = 0.

~— —



Proof of the theorem — Part 1

By induction on dim(V). For each eigenvalue A we introduce the
map gx(x) = f(x) — Ax. Fix some eigenvalue \.

Consider W = g, (V), the range of gy.

W is a subset of V/, because Vx € V : g\(x) = f(x) — Ax € V.
W is a subspace because for u,v € W,a € C exist x,y € V

sit. u=gi\(x) =f(x) —Axand v=g\(y) = f(y) — \y and:
utv=g(x)+ay) =f(x+y)-Ax+y)=a(x+y)e W
au = agy(x) = a(f(x) — Ax) = f(ax) — Max) = g\(ax) € W.
Next, dim(W) < dim(V') because the eigenvector u for \ satisfies
gx(x) =f(x) — Ax =0, i.e. dim(ker(gr)) > 1 and thus

dim(V) = dim(gx(V)) + dim(ker(gy)) = dim(W) + dim(ker(gy))-
The mar f can be restricted to W, because for g\(x) € W we have
flaa(x)) = f(f(x) — Ax) = F(f(x)) — AMf(x) = ax(f(x)) € W.
According to the inductive hypothesis for f and W, the subspace
W has a basis Y from chains of generalized eigenvectors of f.



Example for the first part of the proof

[er(gx) = YJ Y

-17 - —37-5 10-3
For [flk k = <_§7 i) A=2is [g@lkk = <Zf§:§> o (8(1)_02>
Z =1{(3,2,1)7} is a basis of ker(g») so dim(W) =3 —-1=2.

When we extend Z by e!, e? to a basis of V, we get
{g(et), g2(e?)} = {(-3,-2,-1)7,(7,5,3)7} as a basis of W.
Note that W N ker(gz) # ). This intersection has dimension 1.

There are two chains that form the basis Y of the subspace W:
the first is (3,2,1)7 for A = 2 and the next is (1,1,1)7 for A = 1.
(Both have length one, so they contain "ordinary" eigenvectors.)



Proof of theorem — Part 2
Denote d = dim(ker(gy)) and d’ = dim(ker(gy) N W).

Arrange the basis Y into r strings so that the first d’ corresponds

to A\ and others correspond to the other eigenvalues \',... "

1 8 1 1 0

Yihb, — — Y2 — Yi
2 2 2

Yo — =+ — ¥ — yi — 0

d' d' :

Yi, — 0 N — 0
d+1 &/, = &x d+1 8

Yy — 7 N — 0

B/t )

yi =0

As chains of Y are in W, we can extend each of the first d’ chains
by some x' € V so that g\(x') =y forie {1,...,d"}.
The vectors yi, ..., 1‘” form the basis of the space ker(gy) N W.

Complete them by z*,...,z%~? to a basis of ker(gy) (other than
Z) and get d — d’ new chains of length 1 formed by z!,..., z9~ 9"



That yields chains

=y o oy — oy — 0
x9 y,‘j’;, oy 0
d'+1 8\ ) 8/ d'+1 8
Ky — ¥ — 0
In our example: ey gt 0
(2,2,1)" — (3,2,1)T — 0 2L 24 0
(1,1,1)7 & 0 / :
We have no z' because d = d’ = 1. z=4 0

We added d = dim(ker(gy)) vectors to the basis of W,
so in total we have as many as is the dimension of the space V.

We show that they are linearly independent and therefore they
form a basis of the space V.



vV xl.x9

@ w f w
ker(gx) Y- y‘,f;l. .yL'YJ Y
E 28" d'Ly%..y‘f..y{

yi--Y

Consider a linear combination Z aix' + Z bijyl +> iz’ = 0.

Since 0 = g,(0) = g\ (Za,x —I—Zb,dyj —i—Zc, ) Zbuyj
where the vectors yj I

are linearly independent, | @i fori<d.,j=k
bij+1 fori<d,j<k
()\* - /\)b,‘J for i > d/,j = ki
(X‘< — )\)b,‘J + b,"j+1 for i > d,,_j < ki

we must have 0 = b} ; =
where \* # )\ matches
the i-th chain.

It follows from gy (x') = y,; and g,\(yj') = yjfl for i < d’; while for
i>dg(y) = f(¥i) — i =Xy — Ayi = (\* — A\)yj and for
j > 1 also: gA(yJ) f( ) /\yj = f(yj) .—)\*yj + (A" =Ny =
() + (N =Ny =y + (N = Ny}



v oxlx?

(2 w (2 w
ker(gx) || vk, .. y‘,f;l. .yLyYJ Y
228 (ol )y

yi--Y

Consider a linear combination Z ajx' + Z b,-JyJ!' +3 cizi = 0.

Since 0 = g)(0) = gy <Z aix’ + E buyj + Z ciz ) Z b,JJG
where the vectors yj I

are linearly independent, | ai fori<d'j=ki
biji1 for i < d',j <k
(N — N)bi for i > d',j = ki
(X‘< — )\)b,‘J + b,"j+1 for i > d/,_j < ki

we must have 0 = b} ; =

where \* # )\ matches
the i-th chain.

The first case gives: Vi : a; = 0, the next: Vi < d’,Vj > 1: b;j =0
and the other two: Vi > d’,Vj : bj j = 0. In the combination, only

the coefficients b; 1 fori < d’ and ¢; remain, but they are also zero,
since the vectors yll, . ,yld/, zt ... ,zd_d/ form a basis of ker(gy).



