Spanning tree of a graph

Definition: A spanning tree of a connected graph G is its subgraph that is a tree and that contains all vertices of G.

The number of spanning trees of G is denoted by $\kappa(G)$.

Recurrence

Recurrence

Part of the recurrence tree

The recurrence tree may have exponentially many leaves.

Determinants — the number of spanning trees of a graph

Definition: The *Laplace matrix* of a graph G on $V_G = \{v_1, \dots, v_n\}$ is $L_G \in \mathbb{R}^{n \times n}$ such that:

$$(\boldsymbol{L}_G)_{i,j} = egin{cases} \deg(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } (v_i, v_j) \in E_G \\ 0 & \text{otherwise} \end{cases}$$

Observation: The Laplace matrix L_G is singular.

Observation: If G is not connected then $L_G^{1,1}$ is singular.

Theorem: Any graph G on at least two vertices has $\det(L_G^{1,1})$ distinct spanning trees.

The theorem holds also for multigraphs when:

- ► Trees have no loops (as they are cycles of length 1).
- Distinct threads of a multiedge yield different trees.
- $-(L_G)_{i,j}$ for $i \neq j$ is the multiplicity of the edge (v_i, v_i) .
- $ightharpoonup deg(v_i)$ counts edges with multiplicities, but not loops.

Determinants — the number of spanning trees of a graph

Laplace matrix

$$L_G = \begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 \\ -1 & -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & 0 & 2 & -1 & 0 \\ 0 & 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

$$\det(\boldsymbol{\mathcal{L}}_{G}^{1,1}) = \begin{vmatrix} 3 & -1 & -1 & 0 & 0 \\ -1 & 3 & 0 & -1 & 0 \\ -1 & 0 & 2 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{vmatrix} = 11$$

Properties of $det(\mathbf{L}^{i,j})$

$$\begin{split} \det(\boldsymbol{L}_{G}^{1,1}) &= \begin{vmatrix} 3 & -1 & -1 & 0 & 0 & | & \pi \\ -1 & 3 & 0 & -1 & 0 & | & \pi \\ -1 & 0 & 2 & -1 & 0 & | & \pi \\ 0 & -1 & -1 & 3 & -1 & | & \chi \\ 0 & 0 & 0 & -1 & 1 & | & \chi \end{vmatrix} & \iota_{G} = \begin{pmatrix} \frac{2}{-1} & -1 & 1 & 0 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 3 & -1 & | & \chi \\ 0 & 0 & 0 & -1 & 1 & | & \chi \end{vmatrix} \\ &= \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & | & \pi + \pi + \pi + \pi + \pi + \pi + \pi \\ -1 & 3 & 0 & -1 & 0 & | & \pi \\ -1 & 0 & 2 & -1 & 0 & | & \pi \\ 0 & -1 & -1 & 3 & -1 & | & \chi \\ 0 & 0 & 0 & -1 & 1 & | & \chi \\ \end{vmatrix} \\ &= (-1) \cdot \begin{vmatrix} -1 & -1 & 0 & 0 & 0 & | & \pi \\ -1 & 3 & 0 & -1 & 0 & | & \pi \\ -1 & 3 & 0 & -1 & 0 & | & \pi \\ 0 & 0 & -1 & -1 & 0 & | & \pi \\ 0 & -1 & -1 & 0 & | & \pi \\ 0 & 0 & 0 & -1 & 1 & | & \chi \\ \end{vmatrix} \\ &= (-1) \cdot \begin{vmatrix} -1 & -1 & 0 & 0 & 0 & | & \pi \\ -1 & 3 & 0 & -1 & 0 & | & \pi \\ 0 & -1 & -1 & 3 & -1 & | & \chi \\ 0 & 0 & 0 & -1 & 1 & | & \chi \\ \end{vmatrix} \\ &= (-1) \cdot \begin{vmatrix} -1 & -1 & 0 & 0 & 0 & | & \pi \\ -1 & 3 & 0 & -1 & 0 & | & \pi \\ 0 & -1 & -1 & 3 & -1 & | & \chi \\ 0 & 0 & 0 & -1 & 1 & | & \chi \\ \end{vmatrix}$$

Analogously with column operations we get: $\det(\mathbf{L}_G^{2,1}) = -\det(\mathbf{L}_G^{2,2})$.

Corolary: For any $i, j \in \{1, ..., n\}$: $\det(\mathbf{L}_{G}^{i, j}) = (-1)^{i+j} \det(\mathbf{L}_{G}^{1, 1})$.

Laplace matrices of isomorphic graphs

$$\mathbf{L}_G = \begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 \\ 0 & -1 & -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

$$\det(\boldsymbol{\mathit{L}}_{G}^{1,1}) = \det(\boldsymbol{\mathit{L}}_{G'}^{6,6}) = \det(\boldsymbol{\mathit{L}}_{G'}^{1,1})$$

$$\begin{vmatrix} 3 & -1 & -1 & 0 & 0 \\ -1 & 3 & 0 & -1 & 0 \\ -1 & 0 & 2 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 3 & -1 \\ 0 & -1 & 0 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 3 & -1 & 0 & -1 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 3 & -1 & -1 \\ -1 & 0 & -1 & 3 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{vmatrix}$$

Matrices $L_G^{1,1}$, $L_{G'}^{6,6}$ differ only by the permutation of *rows and columns* by π . This π is applied twice: on rows and on columns. Even if $\operatorname{sgn}(\pi) = -1$ the overall determinant sign does not change.

Proof

Theorem: If a multigraph G has $|V_G| \ge 2$ then $\kappa(G) = \det(\boldsymbol{L}_G^{1,1})$.

Proof: W.I.o.g. *G* is connected. By induction on $m = |E_G|$.

Induction basis: For m=1 the graph G has only two vertices and $\kappa(G)=1=\deg(v_2)=(\boldsymbol{L}_G)_{2,2}=\det(\boldsymbol{L}_G^{1,1}).$

Induction step: Choose any $e \in E_G$, w.l.o.g. $e = (v_1, v_2)$.

Denote $A = L_G^{1,1}$, $B = L_{G-e}^{1,1}$ and $C = L_{G\circ e}^{1,1} = A^{1,1} = B^{1,1}$

... C is the submatrix of L_G corresponding to v_3, \ldots, v_n .

By induction hypothesis $\kappa(G - e) = \det(B)$, $\kappa(G \circ e) = \det(C)$.

Matrices A and B are identical except for $b_{1,1}=a_{1,1}-1$, since by the deletion of e the degree of v_2 drops by 1. We express the first column of A as the sum of the first column of B and the vector e^1 .

By the linearity of $\det(\mathbf{A})$ along this split of its first column we obtain $\det(\mathbf{A}) = \det(\mathbf{B}) + \det(\mathbf{C})$. Now we conclude:

$$\kappa(G) = \kappa(G - e) + \kappa(G \circ e) = \det(\boldsymbol{L}_{G - e}^{1,1}) + \det(\boldsymbol{L}_{G \circ e}^{1,1}) = \det(\boldsymbol{L}_{G}^{1,1})$$

Example

$$\kappa(G) = \kappa(G - e) + \kappa(G \circ e) = \det(\mathbf{L}_{G-e}^{1,1}) + \det(\mathbf{L}_{G\circ e}^{1,1}) \stackrel{??}{=} \det(\mathbf{L}_{G}^{1,1})$$

$$\mathbf{L}_{G} = \begin{pmatrix}
2 & -1 & -1 & 0 & 0 & 0 \\
-1 & 3 & -1 & -1 & 0 & 0 \\
-1 & -1 & 3 & 0 & -1 & 0 \\
0 & -1 & 0 & 2 & -1 & 0 \\
0 & 0 & -1 & -1 & 3 & -1 \\
0 & 0 & 0 & 0 & -1 & 1
\end{pmatrix}$$

$$\mathbf{L}_{G-e} = \begin{pmatrix}
1 & 0 & -1 & 0 & 0 & 0 \\
0 & 2 & -1 & -1 & 0 & 0 \\
-1 & -1 & 3 & 0 & -1 & 0 \\
0 & -1 & 0 & 2 & -1 & 0 \\
0 & 0 & -1 & -1 & 3 & -1 \\
0 & 0 & 0 & 0 & -1 & 1
\end{pmatrix}$$

$$\mathbf{L}_{G\circ e} = \begin{pmatrix}
3 & -2 & -1 & 0 & 0 \\
-2 & 3 & 0 & -1 & 0 \\
-1 & 0 & 2 & -1 & 0 \\
0 & -1 & -1 & 3 & -1 \\
0 & 0 & 0 & -1 & 1
\end{pmatrix}$$

Example

$$\kappa(G) = \kappa(G - e) + \kappa(G \circ e) = \det(L_{G - e}^{1,1}) + \det(L_{G \circ e}^{1,1}) \stackrel{??}{=} \det(L_{G}^{1,1})$$

$$L_G = \begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 \\ -1 & -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & 0 & 2 & -1 & 0 \\ 0 & 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

$$L_{G - e} = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & -1 & -1 & 0 & 0 \\ -1 & -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & 0 & 2 & -1 & 0 \\ 0 & 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

$$L_{G - e} = \begin{pmatrix} 3 & -2 & -1 & 0 & 0 \\ -2 & 3 & 0 & -1 & 0 \\ -1 & 0 & 2 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

$$L_{G - e}^{1,1} = A$$

$$L_{G - e} = B$$

$$L_{G - e} = \begin{pmatrix} 3 & -2 & -1 & 0 & 0 \\ -2 & 3 & 0 & -1 & 0 \\ -1 & 0 & 2 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

Example

$$\kappa(G) = \kappa(G - e) + \kappa(G \circ e) = \det(L_{G - e}^{1,1}) + \det(L_{G \circ e}^{1,1}) = \det(L_{G}^{1,1})$$

$$\det(A) = \begin{vmatrix} 3 & -1 & -1 & 0 & 0 \\ -1 & 3 & 0 & -1 & 0 \\ -1 & 0 & 2 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 2 + 1 & -1 & -1 & 0 & 0 \\ -1 + 0 & 3 & 0 & -1 & 0 \\ -1 + 0 & 0 & 2 & -1 & 0 \\ 0 + 0 & -1 & -1 & 3 & -1 \\ 0 + 0 & 0 & 0 & -1 & 1 \end{vmatrix} =$$

$$= \begin{vmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & -1 & -1 & 0 & 0 \\ 0 & 3 & 0 & -1 & 0 \\ 0 & 3 & 0 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{vmatrix} =$$

$$= \begin{vmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{vmatrix} + \begin{vmatrix} 3 & 0 & -1 & 0 \\ 0 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{vmatrix} = \det(B) + \det(C)$$

Spanning trees of complete graphs — Cayley's formula

Theorem: The complete graph K_n has n^{n-2} spanning trees.

Proof:

$$\kappa(K_n) = \det(\boldsymbol{L}_{K_n}^{1,1}) = \begin{vmatrix} n-1 & -1 & \dots & -1 \\ -1 & n-1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ -1 & \dots & -1 & n-1 \end{vmatrix} = \begin{bmatrix} n-1 & -1 & -1 & \dots & -1 \\ -1 & \dots & -1 & n-1 \end{bmatrix} = \begin{bmatrix} n-1 & -1 & -1 & \dots & -1 \\ -n & n & 0 & \dots & 0 \\ -n & 0 & n & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -n & 0 & \dots & 0 & n \end{vmatrix} = \begin{bmatrix} 1 & -1 & -1 & \dots & -1 \\ 0 & n & 0 & \dots & 0 \\ 0 & 0 & n & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & n \end{bmatrix} = n^{n-2}$$