Solving a system Ax = b with regular A

aix1 +aipxe = by

a2 1x1 + axpxo = by

From the 2nd express x; = % and substitute to the Ist:
by — a2 px2
agl————— +aipx = b &
a1
ai1be —ar1a2xe + arpaz1x
: = b =
a1
(—arp1a2+ a1pa1)x2 = axiby —aiib &
aribo —ax1bhy
X2 =

aj1az2 — a2,1312

ar1bo—az by
x by — 92,2 a1,132,2—a2,131,2 b132,2 - b231,2
a1 ar1azp — a2,1a12




For three equations

ay1x1 +aipxo + a13x3 = by
a2 1x1 + axoXo + ax3x3 = by

a3 1x1 + azoxo + a3 3x3 = b3

In an analogous way:
(express an unknown from one equation and substitute it to the others)

b1 axpas3taiparszby +aizby asp—b1 axzazp—aieby a3z—aizaz2bs

X1 =

1 a1,132,2a3,3+a1,232,333,1+31,332,133,2—a1,132,333,2—a1,232,133,3—3a1,332,233,1
o — ay1by az3+by apzazitaizasibs —airiaxsbs —bi axiazz—aizbhe asa
2 a1,132,2a3,3+a1,232,333,1+a1,332,133,2—a1,132,333,2—a1,232,133,3—3a1,332,233,1
X3 = ap1a2bs taipby a3it+br axiazp—aiiby azp—aiparibs —b1 axpaza

31,132,283 3+a1,232,333,1+31,382,133,2—3a1,182,383,2—a1,232,1333—a1,332,233,1



Determinants
Review: S, the group of permutations over the set {1,..., n}.
The sign of p € S, is sgn(p) = (—1)# of inversions of p

Definition: The determinant of a matrix A € K" " is

n

det(A) = Z sgn(p) H ai,p(i) Denoted also by |A|.
PESH i=1

Example: For A € K?*2 we have S, = {(1,2),(2,1)}.

for p=(1,2) we get sgn(p) =+1 and [[7, ajp(i) = a1,132.2

for p=(2,1) we get sgn(p) = -1 and [[;aj,) = a12a2:1
Hence:
det(A) = |11 212

=(+1)-a11a2o+(—1)-ai0a
a1 B2 (+1) - a11a02 + (—1) - a10a21

Intuitively:

ali . . ai2
+ 7 -
. 2272 3271 .



For matrices of order three we have six possible permutations
S3 = {(13 2, 3)7 (1’ 3, 2)’ (2a 1, 3)7 (27 3, 1)7 (37 L, 2)7 (3’ 2, 1)}

permutations p = (1,2,3),(2,3,1) and (3,1,2) have sgn(p) = +1
permutations p = (1, 3,2),(2,1,3) and (3,2,1) have sgn(p) = —1

a1 d12 a3
_ ta11az2a33+ a12a23a31 + 313421332
a1 d22 43| =
—a1,182,33@32 — d1,2d21d33 — d1,332,2331
a31 4d32 4a33
a1 ai2 a3
+ as o + a3 a
az;3 az1 az2
ai ai2 a3
- a3 | — | a1 a2
aso az;3 az1
a a a .
A A L P Only for matrices
Sarrus rule: a1 Ay ao,
AL ~ 3x3 /Il
—|4d3,1 432 433



Observation: If A has a zero row, then det(A) = 0.

n
Proof: Every product [] a; ,(;) contains a term from the zero row.
i=1

Observation: For triangular (also for diagonal) matrices we get:

d11 41,2 ... din

0 a2 ... an
= 31713272 e a,,,,,

0 ... 0 apn

Proof: Every permutation p, for which there is an index with
i < p(i) must have an index j > p(j). Consequently a; ,;y = 0.

If for a contradiction was i < p(i) for all i € {1,...,n} and for
some i; was i; < p(i1), then consider the sequence
i1, ip = p(i1), i3 = p(iz),... Since p is injective, this sequence is

strictly increasing. Hence it is unbounded, a contradiction.

Only the product aj1a2 ... as, corresponding to the identity
permutation has no zero term from below the diagonal.



Properties of the determinant

Observation: det(A) = det(AT)

Proof: Forape S(n):p(i)=j< pi(j) =i

det(AT) = Z sgn(p) H(AT),-7P(,~) = Z sgn(p) H ap(i),i =
i=1

pES, i=1 PESH

= Z sgn(p H p-1() = = det(A)

p~leS,



Properties of the determinant

Observation: det(A) = det(AT)

Observation: (Rearranging columns according to a permutation q)
For g € S, and B : b;j = aj 4(;) holds det(B) = det(A) - sgn(q).

Proof: det(B) = Z sgn(p) H b,-,p(,-) = Z sgn(p) H 3 q(p(i)) =
i=1

PES, i=1 PESH
n

— Z sgn(q) sgn(q) sgn(p) H i (qop)(i) =

pPES, i=1

= sgn(q Z sgn(r H aj (i) = sgn(q) det(A)
reSy
for r = g o p; note that p — r is a bijection on S,



Properties of the determinant

Observation: det(A) = det(AT)
Observation: (Rearranging columns according to a permutation q)
For g € S, and B : b;j = aj 4(;) holds det(B) = det(A) - sgn(q).
Corollaries:

» The same holds for any rearrangement of rows.

» Exchange of two rows/columns changes the sign of the
determinant.

» For fields char # 2: If a matrix A has two rows/columns
identical, then det(A) = 0. Proof: « = —a = a =0.



Properties of the determinant

Observation: det(A) = det(AT)

Observation: (Rearranging columns according to a permutation q)
For g € S, and B : b;j = aj 4(;) holds det(B) = det(A) - sgn(q).
Lemma: If A has two rows/columns identical, then det(A) = 0.
Proof: Let the k-th row match the k’-th. .
Tnhen anypEnS,, and g = (k, k") o p yield: ' :
igl ai p(i) = I_l;ll aiq(i), but sgn(p) = —sgn(q).
As p <> g is a bijection between permutations with opposite signs,
the terms in det(A) can therefore be paired to cancel each other.



Linearity of the determinant

Theorem: The determinant of a matrix is linearly dependent on
each its row and column, i.e. w.r.t. the scalar multiple of a row:

a1 a2 S ai,n a1 412 ... din
a1 a2 ... azn a1l a2 ... an
: : —t.
t-aj; t-ajp ... t-ajp a1 a2 ... ain
an,1 an2 ce an,n anl 4dn2 ... dnn

and w.r.t. the sum along a row:

ar a2 A ain a1l 412 ... adin a1 a2 ... dn
ari az 2 cee azn a1 a2 ... axn a1 a2 ... axn

: : : | : ] : :
bf,l+CIA1 bf,2+CIA2 cee bi,n+ Ci,n bf,l bf,2 e bf,n Ci 1 Cio . Ci,n

an,1 an2 e an,n anl dn2 ... dnn an1l dn2 ... dnn




Proof for the scalar

ai
a1

t-aj1

dan,1

aip
anp

t-aj2

an,2

multiple

al,n
a2.n

t~19,-n - ngn(

’ pESH

an,n

=t Z sgn(p) H dip(iy = 1-
i=1

PESH

p)

aii
as

aj 1

an,1

(TTor)

a1
azo

~
~
I

al,n
a2.n
di.n

)

an,n




Proof for the addition

If matrices A, B, C satisfy a, j = {

det(A)

b,"j + Cij when k =i and
= when k # i, then

> sgn(p) 11 akp(k)
pPES, k=1
Y. aip(i sgn(p [I Ak p(k
PO R0 ( )ke{l,...,n}\i p(K)
> | bipy +cipy) senlp [T ax
PESh < P Pl )> ( )ke{l,...,n}\i oplk)
> bipi sgn(p)
pES, ke{1,..,n}\i
> Ci,p(i) sgn(p)
PESh ke{l,...,nH\i

n n

> sen(p) H k,p(k) T Z sgn(p )kl;ll Ck,p(k)

Pesn k=1
det(B) + det(C)



Example for the addition

bii+ci1 bip+cp biz+cs
a1 a2 a3 =
a31 a3 2 a33

(big+ ci1)azpass + (bio + cio)azzas + (b1 + ci3)azi1a32
—(b11 + ci1)apzasy — (bip+ cin)aziazs — (b1 + ci3)azas

—
*
~

= (bipaxpas3 + bioarzazi + bizazias?
—bi1ap3asp — bipari1az3z — bizansasy) +
(ciiapas3+ cioan3asy + Ci13a1a832
—C11@23332 — C12a,1333 — C1.3322331)
b1,1 b1,2 b173 Ci,1 G2 €13
= |a21 az2 a3\t (a1 a2 a3
a31 a32 3| (331 432 33

(%) ... distributive, associative a commutative axioms were used
for the algebraic manipulation with these terms.



Linearity of the determinant

Theorem: The determinant of a matrix is linearly dependent on
each its row and column.

Corollary: Addition of a scalar multiple of a row to another does
not change the determinant; analogously for columns.

Informal proof:
— dje +t- dje —

.
aj7. o _ aJ7

aj7._ — _ai’._
_aj7._ _a.j?._

Corollary: If A is singular then det(A) = 0.

—i—t

Proof: The dependent row can be eliminated to the zero row.



Determinant calculation

Transformation into the row echelon form over Zs:

3 4 2 3 4

o P~ N
O O O
B~ W =N
O O O
o O~ N
ON DN D
=AW N

1 30 0 0
1 31 4 2
3 2 4 3 2

O O O
O W b
O N DN
— & W

Transformations used:

1. addition of the 3-multiple of the first row to the second and
addition (of the 1-multiple) of the first row to the third

2. rearrangements of the rows according to the permutation with
cycles ((1),(2,3,4)) — does not change the sign

3. adding the third column to the second



Determinant of products

Theorem: For any A, B € K" " : det(AB) = det(A) det(B).
Proof: W.l.o.g. both A or B are regular otherwise we get 0 = 0.

Products with elementary matrices preserve determinant
det(EB) = det(E) det(B), because:

» for addition of the i-th row to the j-th: det(E) = 1,

» for scaling of the i-th row by t: det(E) = t.
(The other operations can be derived from these two.)
Factorize the regular A into elementary matrices A = E; ... E.
det(AB) = det(E; ... ExB) = det(E;) det(E, ... ExB) =
det(E;)...det(Ex)det(B) = det(E; ... Ex) det(B) = det(A) det(B)
Corollary: det(A~1) = (det(A))~ L.
Proof: det(A)det(A~!) = det(AA~!) = det(l,) =1
Corollary: A is regular if and only if det(A) # 0.



Laplace expansion

Notation: A’ is the submatrix obtained from A by deleting the
i-th row and j-th column.

Theorem: For any A € K™ and any i € {1,...,n} it holds that:
det(A) = > a;;(—1)"" det(A™)
j=1

Proof: Express the i-th row as the linear combination of vectors of
the standard basis (transposed to rows) and use the linearity:
(ai1,3i2, .- ain) = ai1(e")T + ai2(€®)T + -+ ajn(e")

aj.1 a2 ain| =aj1/10...0 +ai,2 010...0| + - +af,n0 01
...................... — (e)T—

The j-th term: [0...010...0| = |— (e/)T—| = (—1) | ......... —

= (1) i (—1)H [P0 = (Z1)7 det(AY)
S o




Example of the Laplace expansion
Expansion along the first row:

12 3 100 Jo20 oo 3
456 = |45 6+45 6/+45 6
789 7809 [789 7809
56 |46 _|as
= 89'_27 ol T3 8'

= —3-2:(-6)+3(-3) = 0

To determine the sign of the second determinant:

020 2 0 0 2 00 L6
456:—546:—.46:—279|
7809 8 7 9 .79

1. column swap by the transposition (1,2) changes the sign

2. the rest of the first row does not affect the determinant

3. the fixed element (1) is excluded from all permutations and
the matrix order is reduced by one



The adjoint matrix

Definition: For a matrix A € K"*" the adjoint matrix is adj(A)
defined as adj(A);; = (—1)" det(A"Y).

... the factors of the Laplace expansion along the i-th row of A
we put into the j-th column of adj(A).

1 2 5
[Al=2 3 0 =2-(—1)2+1§ §+3-( 1)? 2; 2'+0-

3 5 3

.25

adj(A)1n = (1% . g 2‘:19

5 3

9 19 —15

adj(A) = | -6 12 10

1 -1



The adjoint matrix and the inverse matrix
Theorem: For any regular matrix A € K™": A~! = ﬁ(/‘) adj(A).

Example:

Al =

1w N

5
0]=9+50+0—-45-0—-12=2
3

—15

adj(A) = —12

~ ~ w N =

1 . 9/2 19/2 —15/2
Al = adjA)=|-3 -6 5
det(A) ™ 12 1/2 —1/2




The adjoint matrix and the inverse matrix

Theorem: For any regular matrix A € K™": A~! = ﬁ(/‘) adj(A).
Proof: By the Laplace expansion of det(A):

(i-th row of A) - (i-th column of adj(A)) = det(A)
for j # i: (j-th row of A) - (i-th column of adj(A)) = det(A’) =0,
as A’ is obtained from A by replacing the i-th row by the j-th.
Thus: A-adj(A) = det(A) - I, = A (gt adi(A)) = I,

1 25
2 5 1 5 1 2
2(-12 2 3‘+3.(_1)2+2 3 3’+0~(—1)2Jr3 3 5‘= 2 3 0/=|A|
353

Off the diagonal for i =2 and j = 1: (A - adj(A))2,1

1 2 5
1.(_1)2+1§ §‘+2-(_1)2+2§ g’+5.(_1)2+3§ ﬁ‘: 12 5 =0
35 3




Cramer rule

Theorem: Let A € K™ be a regular matrix. For any b € K", the
solution x of Ax = b satisfies x; = ﬁ(A) det(A;_p),

where A;_p is the matrix obtained from A by replacing its i-th
column with the vector b.

Proof: Consider the matrix I;_,x obtained from I, by

replacing its i-th column with the vector x e L
AN
0 e’[x
Then A- I,'_>X = Ai%bv A 1
thus det(A) - det(lix) = det( i—b),
hence x; = det(l;ix) = det(A) det(A;_p). A a. j|b

Ai%b



Cramer rule — example
The system Ax = b = (7,4,9)" can be solved by determinants:

7 25 1 75
det(A1_>b): 4 3 0| =4, det(A2_>b): 2 4 0|=0,
9 5 3 3 9 3
1 2
det(As_p) =2 3 4|=2
3 5

det(A3*>b)

Ax:<2 ; o>.(o :<4>:b
3 5 3 1 9

det(Ale)
Hence x = ﬁ(A) det(Ayp) | = %



Different kinds of hull of a set in the Euclidean space

Foraset X = {x1,...,xx} CR" PX)
X
Linear hull: £(X {Z ajxj,aj € R} L
.. the smallest subspace containing X. 0 £(X)

' K K
Affine hull: - {Za;xi, s €RY a= 1}

.. the smallest translation-of-a-subspace containing X.

' K
Convex hull: C( {Za,x,, a; € [0, 1],2 aj = 1}
i=1

.. the smallest convex set containing X.

k
The parallelepiped spanned by X: P(X {Z ajx;, a; € [0, 1]}
i=1



Geometric meaning of the determinant

Theorem: Given vectors xi,...,x, € R", then the volume of the
parallelepiped P spanned by xi, ..., x, is | det(A)|, where the
vectors xi, ..., x, form the columns of A.

Example: The area S(P) of a parallelogram spanned by two
vectors x, y in R?:

X2 _|_ y2 y].
S: B8
Y2
!
%/ S(P)
X b X2
S,| S
0 X1 X1+y

SP)=(x1+y1)x2+y2) —2(5.4+ Sp+ )
= X1X2 + X1Y2 + Y1X2 + Y1Y2 — X1X0 — y1y2 —

X1 N
X2 Y2

=X1y2 —Y1X2 =




Proof idea - elementary transforms preserve the volume

Applied on the transpose det(A”) = det(A); vectors are rows.

tx
h
1
X1 X2 X1 X2 X1 X2
yioy yittxa  ya+txe 0

y
t/y/ X/
‘ B .
x1+t'0 xo+t'yy|  |xg O x; 0
0 o | 10 » 0




Geometric meaning of the determinant

Theorem: Given vectors x1,...,x, € R", then the volume of the
parallelepiped P spanned by xi, ..., x, is | det(A)|, where the
vectors xi, ..., X, form the columns of A.

Corollary: For a linear map f : R” — R" and [f]xx is the matrix of
this linear map w.r.t. some basis X, then the volumes of bodies
change under f as follows:

vol(f(V)) = | det([f]xx)| - vol(V)

Proof idea: Split V into axis aligned hypercubes, then they are
mapped onto parallelepipeds with volumes changed by the factor

| det([f]kk)|, because the matrix [f]xk contains images of vectors
of the standard basis as its columns.

For other bases: det([f]xx) = det([id]kx[f]kk[id]xk) =
det([id]XK)_l det([f]KK) det([id]XK) = det([f]KK).



