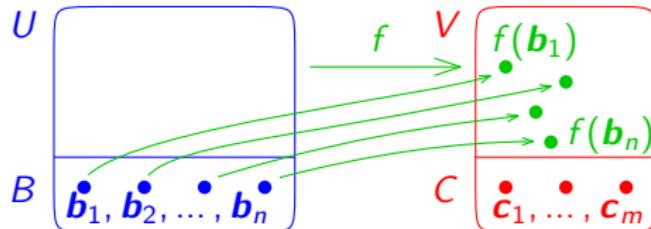


Matrix of a linear map

Definition: Let U and V be vector spaces over the same field F , with bases $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ and $C = (\mathbf{c}_1, \dots, \mathbf{c}_m)$.

The *matrix of a linear map* $f : U \rightarrow V$ w.r.t. bases B and C is $[f]_{B,C} \in F^{m \times n}$ whose columns are the vectors of coordinates with respect to the basis C of the images of the vectors of the basis B .

Formally: $[f]_{B,C} = \begin{pmatrix} & & \\ [f(\mathbf{b}_1)]_C & \dots & [f(\mathbf{b}_n)]_C \\ & & \end{pmatrix}.$



$$[f]_{B,C} = ([f(\mathbf{b}_1)]_C, \dots, [f(\mathbf{b}_n)]_C)$$

Use of the matrix of a linear map

The matrix is $[f]_{B,C} = ([f(\mathbf{b}_1)]_C, \dots, [f(\mathbf{b}_n)]_C)$.

Observation: For any $\mathbf{u} \in U$ it holds that: $[f(\mathbf{u})]_C = [f]_{B,C}[\mathbf{u}]_B$.

Proof: Let $\mathbf{u} = \sum_{i=1}^n a_i \mathbf{b}_i$, i.e. $[\mathbf{u}]_B = (a_1, \dots, a_n)^\top$.

Then $f(\mathbf{u}) = f\left(\sum_{i=1}^n a_i \mathbf{b}_i\right) = \sum_{i=1}^n a_i f(\mathbf{b}_i)$ and hence also:

$$[f(\mathbf{u})]_C = \left[\sum_{i=1}^n a_i f(\mathbf{b}_i) \right]_C = \sum_{i=1}^n a_i [f(\mathbf{b}_i)]_C = [f]_{B,C}[\mathbf{u}]_B.$$

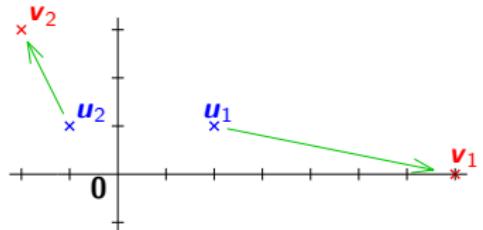
$$\begin{array}{c} U \\ \boxed{\mathbf{u}} \\ B \\ \boxed{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n} \\ [\mathbf{u}]_B = (a_1, \dots, a_n)^\top \end{array}$$

$$\begin{array}{c} V \\ \boxed{f(\mathbf{u})} \\ C \\ \boxed{\mathbf{c}_1, \dots, \mathbf{c}_m} \\ [f(\mathbf{u})]_C = [f]_{B,C}[\mathbf{u}]_B \end{array}$$

$$\begin{array}{c} [\mathbf{u}]_B \\ \boxed{a_1} \\ \vdots \\ a_n \\ [f]_{B,C} \\ \boxed{[f(\mathbf{b}_1)]_C \dots [f(\mathbf{b}_n)]_C} \\ | \\ | \\ | \\ | \\ [f(\mathbf{u})]_C \end{array}$$

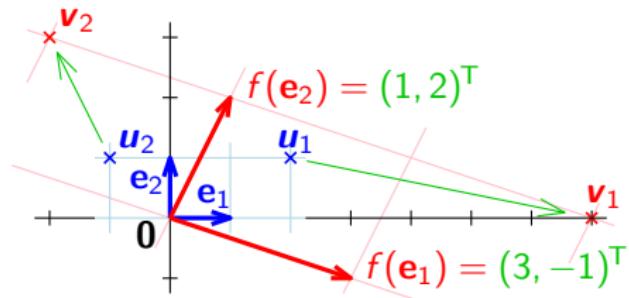
The matrix of a linear mapping in the plane

With respect to the standard basis E ,
find the matrix of $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ that
maps $u_1 = (2, 1)^T$ on $v_1 = (7, 0)^T$
and $u_2 = (-1, 1)^T$ on $v_2 = (-2, 3)^T$.



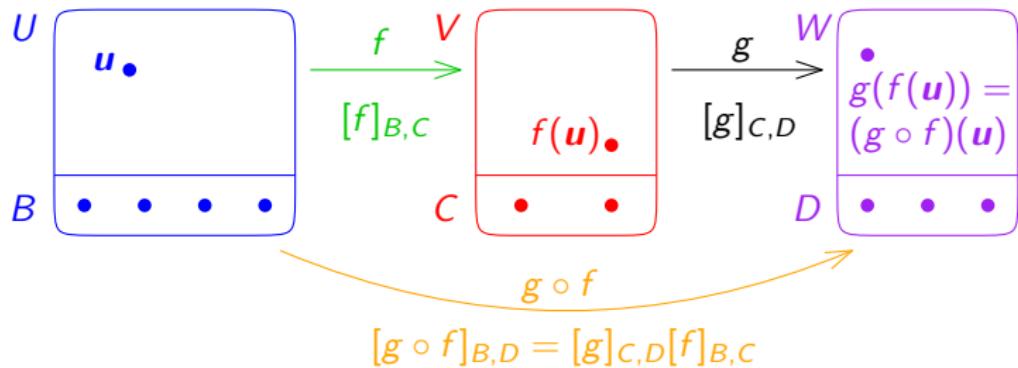
The matrix shall satisfy $[f]_{E,E}[u_i]_E = [v_i]_E$ for $i \in \{1, 2\}$, i.e.

$$[f]_{E,E} \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 7 & -2 \\ 0 & 3 \end{pmatrix} \Rightarrow [f]_{E,E} = \begin{pmatrix} 7 & -2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}.$$



Composition of linear maps

Observation: Let U, V and W be vector spaces over F with finite ordered bases B, C and D . For matrices of linear maps $f : U \rightarrow V$ and $g : V \rightarrow W$ it holds that: $[g \circ f]_{B,D} = [g]_{C,D}[f]_{B,C}$



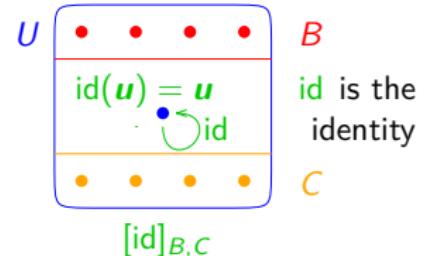
Proof: For any $\mathbf{u} \in U : [(g \circ f)(\mathbf{u})]_D = [g \circ f]_{B,D}[\mathbf{u}]_B$, and also: $[(g \circ f)(\mathbf{u})]_D = [g(f(\mathbf{u}))]_D = [g]_{C,D}[f(\mathbf{u})]_C = [g]_{C,D}[f]_{B,C}[\mathbf{u}]_B$. If we substitute for \mathbf{u} the i -th vector of B , we get $[\mathbf{u}]_B = \mathbf{e}_i$ and then $[g \circ f]_{B,D}\mathbf{e}_i = ([g]_{C,D}[f]_{B,C})\mathbf{e}_i$ yields that the matrices have the i -th columns identical. Therefore $[g \circ f]_{B,D} = [g]_{C,D}[f]_{B,C}$.

The change of basis matrix

Definition: Let B and C be two finite ordered bases of a vector space U . The matrix $[\text{id}]_{B,C}$ is the *change of basis matrix* from B to C .

Observation: For every $\mathbf{u} \in U$ it holds:

$$[\mathbf{u}]_C = [\text{id}(\mathbf{u})]_C = [\text{id}]_{B,C}[\mathbf{u}]_B.$$



Observation: Since $[\text{id}]_{C,B}[\text{id}]_{B,C} = [\text{id}]_{B,B} = \mathbf{I}$, every change of basis matrix is regular and $[\text{id}]_{C,B} = ([\text{id}]_{B,C})^{-1}$

Procedure: Calculation of $[\text{id}]_{B,C}$ from a basis B to a basis C in F^n :

For $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ build $\mathbf{B} = \begin{pmatrix} | & | \\ \mathbf{b}_1 & \dots & \mathbf{b}_n \\ | & | \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} | & | \\ \mathbf{c}_1 & \dots & \mathbf{c}_n \\ | & | \end{pmatrix}$.
and $C = (\mathbf{c}_1, \dots, \mathbf{c}_n)$

Each $\mathbf{u} \in F^n$ has $\mathbf{u} = \sum_{i=1}^n a_i \mathbf{b}_i = \mathbf{B}[\mathbf{u}]_B$ with $[\mathbf{u}]_B = (a_1, \dots, a_n)^\top$,

and also $\mathbf{u} = \sum_{i=1}^n d_i \mathbf{c}_i = \mathbf{C}[\mathbf{u}]_C$ for $[\mathbf{u}]_C = (d_1, \dots, d_n)^\top$.

Now $\mathbf{u} = \mathbf{B}[\mathbf{u}]_B = \mathbf{C}[\mathbf{u}]_C$ gives: $[\mathbf{u}]_C = \mathbf{C}^{-1} \mathbf{B}[\mathbf{u}]_B = [\text{id}]_{B,C}[\mathbf{u}]_B$.

Trick: Save the product by: $(\mathbf{C}|\mathbf{B}) \sim \sim (\mathbf{I}|\mathbf{C}^{-1}\mathbf{B}) = (\mathbf{I}|[\text{id}]_{B,C})$.

Example

In the space \mathbb{Z}_5^4 determine the change of basis matrix from $B = \{(2, 3, 0, 2)^T, (1, 1, 1, 1)^T, (2, 0, 3, 3)^T, (1, 4, 2, 0)^T\}$ to $C = \{(1, 2, 0, 1)^T, (2, 0, 3, 3)^T, (3, 1, 4, 1)^T, (4, 2, 0, 1)^T\}$.

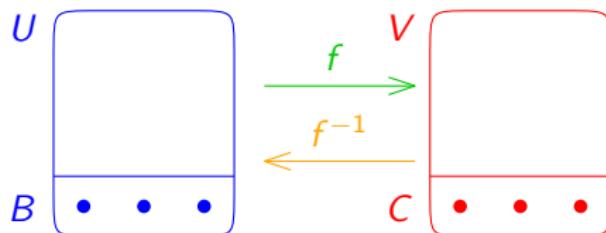
Form a matrix, the columns on the left side are from C , on the right from B . By Gauss-Jordan elimination transform the left side into I . The change of basis matrix $[\text{id}]_{B,C}$ is on the right.

$$\left(\begin{array}{cccc|cccc} 1 & 2 & 3 & 4 & 2 & 1 & 2 & 1 \\ 2 & 0 & 1 & 2 & 3 & 1 & 0 & 4 \\ 0 & 3 & 4 & 0 & 0 & 1 & 3 & 2 \\ 1 & 3 & 1 & 1 & 2 & 1 & 3 & 0 \end{array} \right) \sim\sim \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 4 & 3 & 1 & 3 \\ 0 & 0 & 1 & 0 & 3 & 3 & 0 & 4 \\ 0 & 0 & 0 & 1 & 0 & 4 & 0 & 0 \end{array} \right)$$

The change of basis matrix from B to C is: $[\text{id}]_{B,C} = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 4 & 3 & 1 & 3 \\ 3 & 3 & 0 & 4 \\ 0 & 4 & 0 & 0 \end{pmatrix}$

Characterization of matrices of isomorphisms

Theorem: A linear map $f : U \rightarrow V$ is an isomorphism of spaces U and V with finite bases B and C if and only if $[f]_{B,C}$ is regular.



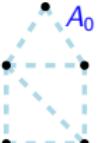
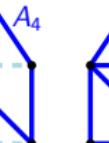
Proof: \Leftarrow : Choose $g : V \rightarrow U$ such that $[g]_{C,B} = ([f]_{B,C})^{-1}$. Then:
 $[g \circ f]_{B,B} = [f]_{B,C}^{-1} [f]_{B,C} = \mathbf{I}_{|B|} = [\text{id}]_{B,B} \Rightarrow f$ is injective,
 $[f \circ g]_{C,C} = [f]_{B,C} [f]_{B,C}^{-1} = \mathbf{I}_{|C|} = [\text{id}]_{C,C} \Rightarrow f$ is surjective.

\Rightarrow : Since $f(U) = V$ and $f^{-1}(V) = U$, we have $\dim(U) = \dim(V)$.
The matrix $[f]_{B,C}$ is square satisfying $[f^{-1}]_{C,B} [f]_{B,C} = [\text{id}]_{B,B} = \mathbf{I}$.

Corollary: If f is an isomorphism, then $[f^{-1}]_{C,B} = ([f]_{B,C})^{-1}$.

Example of an isomorphism

Let (\mathcal{A}, Δ) be the vector space of even subgraphs of a graph G . The underlying field is \mathbb{Z}_2 . The map $f : \mathcal{A} \rightarrow \mathbb{Z}_2^3$ given in the table below is linear and bijective, hence an isomorphism.

\mathcal{A}	A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7
								
$f(A_i) : (0, 0, 0)^T$	$(1, 0, 0)^T$	$(0, 1, 0)^T$	$(0, 0, 1)^T$	$(1, 1, 0)^T$	$(1, 0, 1)^T$	$(0, 1, 1)^T$	$(1, 1, 1)^T$	

Linearity holds, e.g:

$$\begin{array}{c} A_4 \\ \Delta \\ A_5 \end{array} = \begin{array}{c} A_6 \\ \bullet \end{array}$$
$$(1, 1, 0)^T + (1, 0, 1)^T = (0, 1, 1)^T$$
$$f(A_4) + f(A_5) = f(A_4 \Delta A_5) = f(A_6)$$

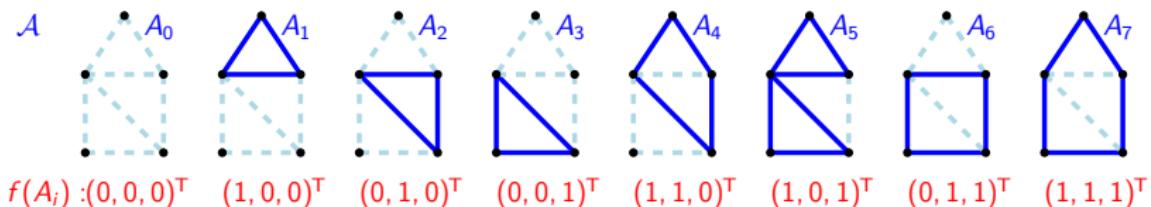
The matrix of the mapping depends on both bases chosen.

$$\text{E.g. } [f]_{\{A_1, A_2, A_3\}, E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The dimension of both spaces is 3.

Use of the matrix

For another choice $B = \{A_4, A_5, A_1\}$ we get $[f]_{B,E} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$



Observe that $[f]_{B,E}[A]_B = [f(A)]_E$ holds.

E.g. for A_6 we get: $A_6 = A_4 \triangle A_5$ and hence $[A_6]_B = (1, 1, 0)^T$.

Now:

$$[f]_{B,E}[A_6]_B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = [f(A_6)]_E$$

Questions to understand the lecture topic

- ▶ What can be said about mappings whose matrix is the identity matrix or a permutation matrix?
- ▶ Is it easier to determine the change of basis matrix from the standard basis or to the standard basis?
- ▶ What do we get if we multiply the matrix of the mapping $[f]_{B,C}$ by the matrix of the inverse mapping $[f^{-1}]_{D,B}$?
- ▶ How are the rank of the matrix of the mapping and the properties of the mapping related, if it is injective or surjective?
- ▶ If two isomorphisms between finite-dimensional spaces can be composed, will the resulting mapping again be an isomorphism?