Matrix of a linear map

Definition: Let U and V be vector spaces over the same field \mathbb{K}, with bases $X=\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right)$ and $Y=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right)$.
The matrix of a linear map $f: U \rightarrow V$ w.r.t. bases X and Y is $[f]_{X, Y} \in \mathbb{K}^{m \times n}$ whose columns are the vectors of coordinates with respect to the basis Y of the images of the vectors of the basis X.
Formally: $[f]_{X, Y}=\left(\begin{array}{ccc}\mid & & \mid \\ {\left[f\left(\boldsymbol{u}_{1}\right)\right]_{Y}} & \ldots & {\left[f\left(\boldsymbol{u}_{n}\right)\right]_{Y}} \\ \mid & & \mid\end{array}\right)$.

Use of the matrix of a linear map
The matrix is $[f]_{X, Y}=\left(\left[f\left(u_{1}\right)\right]_{Y}, \ldots,\left[f\left(u_{n}\right)\right]_{Y}\right)$.
Observation: For any $\boldsymbol{w} \in U$ it holds that: $[f(\boldsymbol{w})]_{Y}=[f]_{X, Y}[\boldsymbol{w}]_{X}$.
Proof: Let $\boldsymbol{w}=\sum_{i=1}^{n} a_{i} \boldsymbol{u}_{i}$, i.e. $[\boldsymbol{w}]_{X}=\left(a_{1}, \ldots, a_{n}\right)^{T}$.
Then $f(\boldsymbol{w})=f\left(\sum_{i=1}^{n} a_{i} \boldsymbol{u}_{i}\right)=\sum_{i=1}^{n} a_{i} f\left(\boldsymbol{u}_{i}\right)$ and hence also:
$[f(\boldsymbol{w})]_{Y}=\left[\sum_{i=1}^{n} a_{i} f\left(\boldsymbol{u}_{i}\right)\right]_{Y}=\sum_{i=1}^{n} a_{i}\left[f\left(\boldsymbol{u}_{i}\right)\right]_{Y}=[f]_{X, Y}[\boldsymbol{w}]_{X}$.

The matrix of a linear mapping in the plane
With respect to the standard basis K, find the matrix of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that maps $\boldsymbol{u}_{1}=(2,1)^{\top}$ on $\boldsymbol{v}_{1}=(7,0)^{\top}$ and $\boldsymbol{u}_{2}=(-1,1)^{T}$ on $\boldsymbol{v}_{2}=(-2,3)^{T}$.

The matrix shall satisfy $[f]_{K, K}\left[\boldsymbol{u}_{i}\right]_{K}=\left[\boldsymbol{v}_{i}\right]_{K}$ for $i=1$, 2, i.e.

$$
\begin{aligned}
& {[f]_{K, K}\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
7 & -2 \\
0 & 3
\end{array}\right) \Rightarrow[f]_{K, K}=\left(\begin{array}{cc}
7 & -2 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right) \text {. }} \\
& \xrightarrow[+]{\text { - }}
\end{aligned}
$$

Composition of linear maps

Observation: Let U, V and W be vector spaces over \mathbb{K} with finite bases X, Y and Z. For matrices of linear maps $f: U \rightarrow V$ and $g: V \rightarrow W$ it holds that: $[g \circ f]_{X, Z}=[g]_{Y, Z}[f]_{X, Y}$

Proof: For any $\boldsymbol{u} \in U:[(g \circ f)(\boldsymbol{u})]_{Z}=[g \circ f]_{X, Z}[\boldsymbol{u}]_{X}$, and also:
$[(g \circ f)(\boldsymbol{u})]_{Z}=[g(f(\boldsymbol{u}))]_{Z}=[g]_{Y, Z}[f(\boldsymbol{u})]_{Y}=[g]_{Y, Z}[f]_{X, Y}[\boldsymbol{u}]_{X}$. If we substitute for \boldsymbol{u} the i-th vector of X, we get $[\boldsymbol{u}]_{X}=\boldsymbol{e}^{i}$ and then $[g \circ f]_{X, Z} \boldsymbol{e}^{i}=\left([g]_{Y, Z}[f]_{X, Y}\right) \boldsymbol{e}^{i}$ yields that the matrices have the i-th columns identical. Therefeore $[g \circ f]_{X, Z}=[g]_{Y, Z}[f]_{X, Y}$.

The change of basis matrix
Definition: Let X and Y be two finite bases of a vector space U. The matrix $[i d]_{X, Y}$ is called the change of basis matrix from X to Y.
Observation: For every $\boldsymbol{u} \in U$ it holds: $[\boldsymbol{u}]_{Y}=[i d(\boldsymbol{u})]_{Y}=[i d]_{X, Y}[\boldsymbol{u}]_{X}$.

id is the identity

Observation: Since $[i d]_{Y, X}[i d]_{X, Y}=[i d]_{X, X}=I_{\operatorname{dim}(U)}$, every change of basis matrix is regular and $[i d]_{Y, X}=\left([i d]_{X, Y}\right)^{-1}$

Procedure: Calculation of $[i d]_{X, Y}$ in \mathbb{K}^{n} :
For $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$
and $Y=\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right)$ build $\boldsymbol{X}=\left(\begin{array}{cc}\mid & \mid \\ x_{1} \ldots & x_{n} \\ \mid & \mid\end{array}\right), \boldsymbol{Y}=\left(\begin{array}{cc}\mid & \mid \\ \boldsymbol{y}_{1} \ldots & \boldsymbol{y}_{n} \\ \mid & \mid\end{array}\right)$.
Each $\boldsymbol{u} \in \mathbb{K}^{n}$ has $\boldsymbol{u}=\sum_{i=1}^{n} a_{i} \boldsymbol{x}_{i}=\boldsymbol{X}[\boldsymbol{u}]_{X}$ with $[\boldsymbol{u}]_{X}=\left(a_{1}, \ldots, a_{n}\right)^{T}$, and also $\boldsymbol{u}=\sum_{i=1}^{n} b_{i} \boldsymbol{y}_{i}=\boldsymbol{Y}[\boldsymbol{u}]_{Y}$ for $[\boldsymbol{u}]_{Y}=\left(b_{1}, \ldots, b_{n}\right)^{T}$.
Now $\boldsymbol{u}=\boldsymbol{X}[\boldsymbol{u}]_{X}=\boldsymbol{Y}[\boldsymbol{u}]_{Y}$ gives: $[\boldsymbol{u}]_{Y}=\boldsymbol{Y}^{-1} \boldsymbol{X}[\boldsymbol{u}]_{X}=[i d]_{X, Y}[\boldsymbol{u}]_{X}$.
Trick: Save the product by: $(\boldsymbol{Y} \mid \boldsymbol{X}) \sim \sim\left(\boldsymbol{I}_{n} \mid \boldsymbol{Y}^{-1} \boldsymbol{X}\right)=\left(\boldsymbol{I}_{n} \mid[i d]_{X, Y}\right)$.

Example

In the space \mathbb{Z}_{5}^{4} determine the change of basis matrix from $X=\left\{(2,3,0,2)^{T},(1,1,1,1)^{T},(2,0,3,3)^{T},(1,4,2,0)^{T}\right\}$ to $Y=\left\{(1,2,0,1)^{\top},(2,0,3,3)^{T},(3,1,4,1)^{T},(4,2,0,1)^{T}\right\}$.

Form a matrix, the columns on the left side are from Y, on the right from X. By Gauss-Jordan elimination transform the left side into \boldsymbol{I}_{n}. The change of basis matrix $[i d]_{X, Y}$ is on the right.

$$
\left(\begin{array}{llll|llll}
1 & 2 & 3 & 4 & 2 & 1 & 2 & 1 \\
2 & 0 & 1 & 2 & 3 & 1 & 0 & 4 \\
0 & 3 & 4 & 0 & 0 & 1 & 3 & 2 \\
1 & 3 & 1 & 1 & 2 & 1 & 3 & 0
\end{array}\right) \sim \sim\left(\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 4 & 3 & 1 & 3 \\
0 & 0 & 1 & 0 & 3 & 3 & 0 & 4 \\
0 & 0 & 0 & 1 & 0 & 4 & 0 & 0
\end{array}\right)
$$

The change of basis matrix from X to Y is: $[i d]_{X, Y}=\left(\begin{array}{llll}3 & 0 & 0 & 0 \\ 4 & 3 & 1 & 3 \\ 3 & 3 & 0 & 4 \\ 0 & 4 & 0 & 0\end{array}\right)$

Characterization of matrices of isomorphisms
Theorem: A linear map $f: U \rightarrow V$ is an isomorphism of spaces U and V with finite bases X and Y if and only if $[f]_{X, Y}$ is regular.

Proof: \Leftarrow : Consider $g: V \rightarrow U$ such that $[g]_{Y, X}=[f]_{X, Y}^{-1}$. Then:
$[g \circ f]_{X, X}=[f]_{X, Y}^{-1}[f]_{X, Y}=\boldsymbol{I}_{|X|}=[i d]_{X, X} \Rightarrow f$ is injective $[f \circ g]_{Y, Y}=[f]_{X, Y}[f]_{X, Y}^{-1}=\boldsymbol{I}_{|Y|}=[i d]_{Y, Y} \Rightarrow f$ is surjective $\left.\Rightarrow: \begin{array}{l}{\left[f^{-1}\right]_{Y, X}[f]_{X, Y}=[i d]_{X, X}=\boldsymbol{I}_{|X|} \Rightarrow|Y| \geq|X|} \\ {[f]_{X, Y}\left[f^{-1}\right]_{Y, X}=[i d]_{Y, Y}=\boldsymbol{I}_{|Y|} \Rightarrow|X| \geq|Y|}\end{array}\right\} \Rightarrow|X|=|Y|$
Corollary: Any isomorphism f satisfies: $\left[f^{-1}\right]_{Y, X}=[f]_{X, Y}^{-1}$.

Example of an isomorphism

Let (\mathcal{X}, \triangle) be the vector space of even subgraphs of a graph G. The underlying field is \mathbb{Z}_{2}. The map $f: \mathcal{X} \rightarrow \mathbb{Z}_{2}^{3}$ given in the table below is linear and bijective, hence an isomorphism.

Linearity holds, e.g:

The matrix of the mapping depends on both bases chosen.
E.g. $[f]_{\left\{A_{1}, A_{2}, A_{3}\right\}, K}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

The dimension of both spaces is 3 .

Use of the matrix
For another choice $X=\left\{A_{4}, A_{5}, A_{1}\right\}$ we get $[f]_{X, K}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$

$f\left(A_{i}\right):(0,0,0)^{T} \quad(1,0,0)^{T} \quad(0,1,0)^{T}$

$(0,0,1)^{T}$

$(1,0,1)^{\top}$

$(0,1,1)^{T}$
$(1,1,1)^{T}$

Observe that $[f]_{X, K}[A]_{X}=[f(A)]_{K}$ holds.
E.g. for A_{6} we get: $A_{6}=A_{4} \triangle A_{5}$ and hence $\left[A_{6}\right]_{X}=(1,1,0)^{T}$. Now:

$$
[f]_{X, K}\left[A_{6}\right]_{X}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left[f\left(A_{6}\right)\right]_{K}
$$

