
Linear mapping
Observation: Let A ∈ F m×n and
f : F n → F m be defined as f (u) = Au. Then:
▶ f (u + v) = A(u + v) = Au + Av = f (u) + f (v)
▶ f (t · u) = A(t · u) = t · Au = t · f (u)

Definition: Let U and V be vector spaces over the same field F .
A mapping f : U → V is a linear mapping if:
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f (u + v)▶ ∀u, v ∈ U :
f (u + v) = f (u) + f (v)

▶ ∀u ∈ U, ∀t ∈ F :
f (t · u) = t · f (u)

Observation: Each linear mapping satisfies: f (0) = 0.



Examples of simple linear mappings

Between general vector spaces f : U → V over the same F .
The trivial linear mapping given by: ∀u ∈ U : f (u) = 0.
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The identity id on U given by: ∀u ∈ U : id(u) = u.
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The identity is also an immersion of U into V when U ⊆ V .
Linearity of both addition and scalar multiplication is here obvious.



Geometric linear mappings
Some geometric transformations in R2 or R3 that fix the origin:
▶ rotation around the origin
▶ reflection across an axis that goes through the origin
▶ scaling with the center in the origin,

including non-uniform scaling and projection
▶ any similarity transformation that combines the above
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Properties of linear mappings
Observation: If f : U → V ,
g : V → W are linear maps,
then (g ◦ f ) : U → W is linear.
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g ◦ f
u f (u) g(f (u)) =

(g ◦ f )(u)

Proof: (g ◦ f )(u + v) = g(f (u + v)) = g(f (u) + f (v)) =
= g(f (u)) + g(f (v)) = (g ◦ f )(u) + (g ◦ f )(v)
(g ◦ f )(tu) = g(f (tu)) = g(tf (u)) = tg(f (u)) = t(g ◦ f )(u)

Observation: If f : U → V is a linear bijective mapping,
then f −1 : V → U is a linear map too.
Proof: For any v , v ′ ∈ V
let u = f −1(v) and u′ = f −1(v ′),
that is, f (u) = v and f (u′) = v ′.
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Linearity of addition: f −1(v + v ′) = f −1(f (u) + f (u′)) =
f −1(f (u + u′)) = u + u′ = f −1(v) + f −1(v ′)
Linearity of scalar multiplication:
∀t ∈ F : f −1(tv) = f −1(tf (u)) = f −1(f (tu)) = tu = tf −1(v).
Definition: A bijective linear mapping is called an isomorphism.



Transformation to the vector of coordinates
Proposition: For a space U over F with a basis B = (b1, . . . , bn)
the mapping f : U → F n defined as f (u) = [u]B is linear.

Proof: For u, v ∈ U: express u =
n∑

i=1
aibi , v =

n∑
i=1

cibi , i.e. the

coordinate vectors are [u]B = (a1, . . . , an)T, [v ]B = (c1, . . . , cn)T.

L. of addition: f (u + v) = [u + v ]B =
[ n∑

i=1
aibi +

n∑
i=1

cibi

]
B

=

=
[ n∑

i=1
(ai + ci)bi

]
B

= (a1 + c1, . . . , an + cn)T =

= (a1, . . . , an)T + (c1, . . . , cn)T = [u]B + [v ]B = f (u) + f (v)

Linearity of scalar multiplication:
For t ∈ F : f (tu) = [tu]B =

[
t
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aibi

]
B

=
[ n∑

i=1
taibi

]
B

=

= (ta1, . . . , tan)T = t(a1, . . . , an)T = t[u]B = tf (u)

Observation: The map u ↔ [u]B is a bijection, i.e. an isomorphism.



Further examples of linear maps

In arithmetic vector spaces
the projection to the i-th
coordinate, i.e. πi : F n → F 1

given πi((u1, . . . , un)T) = ui ,
is a linear mapping.
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(u1, ... , ui , ... , un)T
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Note: We only write ui instead
formally correct (ui)T.

On the space of functions with
derivatives of all degrees

f (x) = x2 − x − 1 f ′(x) = 2x − 1

f → f ′

differentiation is a linear map:
(f (x) + g(x))′ = f ′(x) + g ′(x)

(t · f (x))′ = t · f ′(x)



Extension theorem

Theorem: Let U and V be spaces over F and B be a basis of U.
Then for any mapping f0 : B → V there exists a unique linear map
f : U → V that extends f0, i.e. ∀b ∈ B : f (b) = f0(b).
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Proof: For any u ∈ U there are unique n ∈ N0, a1, . . . , an ∈ F \ 0
and b1, . . . , bn ∈ B such that u =

n∑
i=1

aibi . Then f (u) is uniquely

determined by f (u) = f
( n∑

i=1
aibi

)
=

n∑
i=1

ai f (bi) =
n∑

i=1
ai f0(bi).

Corollary: If f : U → V is linear then dim(U) ≥ dim(f (U)),
because the image f (B) of a basis B of U generates f (U).



Affine spaces
Definition: Let W be a subspace of a vector space U and u ∈ U.
The affine subspace u + W is the set {u + w : w ∈ W }.
The dimension of the affine space u + W is the value dim(W ).

Example: Lines, planes (hyperplanes)
in general position in R3 (in Rd).
Note: An affine space can be defined
more generally as a set A together with
a mapping + : A × W → A satisfying:
▶ ∀a ∈ A, ∀v , w ∈ W :

a + (v + w) = (a + v) + w
▶ ∀a, b ∈ A ∃!v ∈ W : a + v = b
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Elements of A are called points (neither scalars nor vectors).
Observation: For every a ∈ A, the following holds: a + 0 = a.
Proof: Let v be the unique vector satisfying a + v = a, then
a = a + v = (a + v) + v = a + (v +v) ⇒ v = v +v ⇒ v = 0.



The preimage of a vector in a linear mapping
Definition:
The kernel of a linear mapping f : U → V
is ker(f ) = {w ∈ U : f (w) = 0}.
Observation: Kernel is a vector subspace.
Observation: For f : F n → F m given by
f (x) = Ax we get ker(f ) = ker(A).
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Theorem: Let f : U → V be a linear mapping. For any v ∈ V the
equation f (x) = v has either no solution or the solutions form an
affine subspace u + ker(f ), where u is any solution of f (x) = v .
Examples: Solutions of Ax = b; the constant +c in integration.
Proof: When x ∈ u + ker(f ) then x = u + w with w ∈ ker(f ).
Now f (x) = f (u + w) = f (u) + f (w) = v + 0 = v .
Conversely, f (x) = v ⇒ f (x − u) = f (x) − f (u) = v − v = 0,
thus x − u ∈ ker(f ), and therefore x ∈ u + ker(f ).



Bonus: alternative proof of dim RA = dim CA over R
For A ∈ Rm×n consider f : Rn → Rm given by f (x) = Ax.
We know that CA = f (Rn). We indeed show that CA = f (RA).

For every v ∈ CA, there exists u ∈ Rn such that f (u) = v .
Since dim RA + dim(ker A) = n and RA ∩ ker A = {0}, the union
of the bases RA and ker A is a basis for Rn. The vector u can be
written as u = uR + u0 with uR ∈ RA and u0 ∈ ker A. We get:
v = f (u) = f (uR + u0) = f (uR) + f (u0) = f (uR) + 0 = f (uR)
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From f (RA) = CA it follows that dim RA ≥ dim CA. Analogously,
f (RAT) = CAT yields dim CA = dim RAT ≥ dim CAT = dim RA.



Questions to understand the lecture topic

▶ For which of the axioms of linear mapping is it necessary
that both spaces be over the same field?

▶ If f (u) = Au, g(u) = Bu, and they can be composed,
what does the mapping g ◦ f correspond to?

▶ Which of the mappings in the examples are isomorphisms and
which are not?

▶ Why is it necessary for the extension theorem to require the
uniqueness of n and the coefficients ai to be non-zero?

▶ What properties would the mapping f0 from the extension
theorem have to have in order for f to be injective, or to be
an isomorphism?

▶ Why is the image f (U) of the space U a subspace of V
and not just a subset?



Questions to understand the lecture topic

▶ Is a linear mapping uniquely determined by the image of a
linearly independent set or by the image of a system of
generators?

▶ Note that images of linear mappings can be added and
multiplied by a scalar, thus defining their sum and scalar
multiple. What algebraic structure does the set of all linear
mappings {f : U → V } with these two operations form?

▶ What is the geometric interpretation of affine spaces in R3?
▶ Can two different affine spaces of the same dimension have a

nonempty intersection? Is this possible even if they are
determined by the same space W ?


