

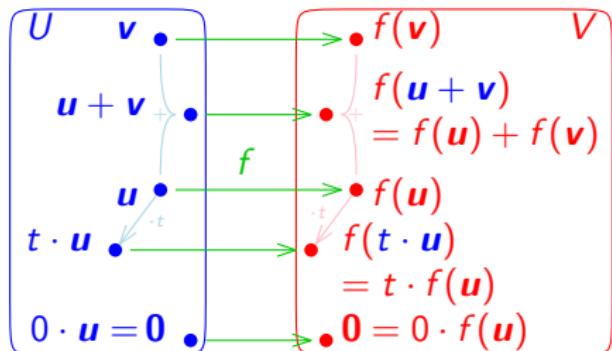
Linear mapping

Observation: Let $A \in F^{m \times n}$ and $f : F^n \rightarrow F^m$ be defined as $f(\mathbf{u}) = A\mathbf{u}$. Then:

- $f(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = f(\mathbf{u}) + f(\mathbf{v})$
- $f(t \cdot \mathbf{u}) = A(t \cdot \mathbf{u}) = t \cdot A\mathbf{u} = t \cdot f(\mathbf{u})$

Definition: Let U and V be vector spaces over the same field F . A mapping $f : U \rightarrow V$ is a *linear mapping* if:

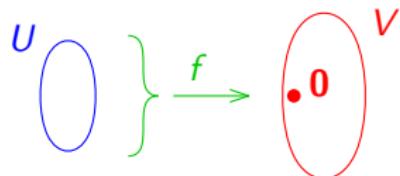
- $\forall \mathbf{u}, \mathbf{v} \in U : f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$
- $\forall \mathbf{u} \in U, \forall t \in F : f(t \cdot \mathbf{u}) = t \cdot f(\mathbf{u})$



Observation: Each linear mapping satisfies: $f(\mathbf{0}) = \mathbf{0}$.

Examples of simple linear mappings

Between general vector spaces $f : U \rightarrow V$ over the same F .
The *trivial* linear mapping given by: $\forall \mathbf{u} \in U : f(\mathbf{u}) = \mathbf{0}$.



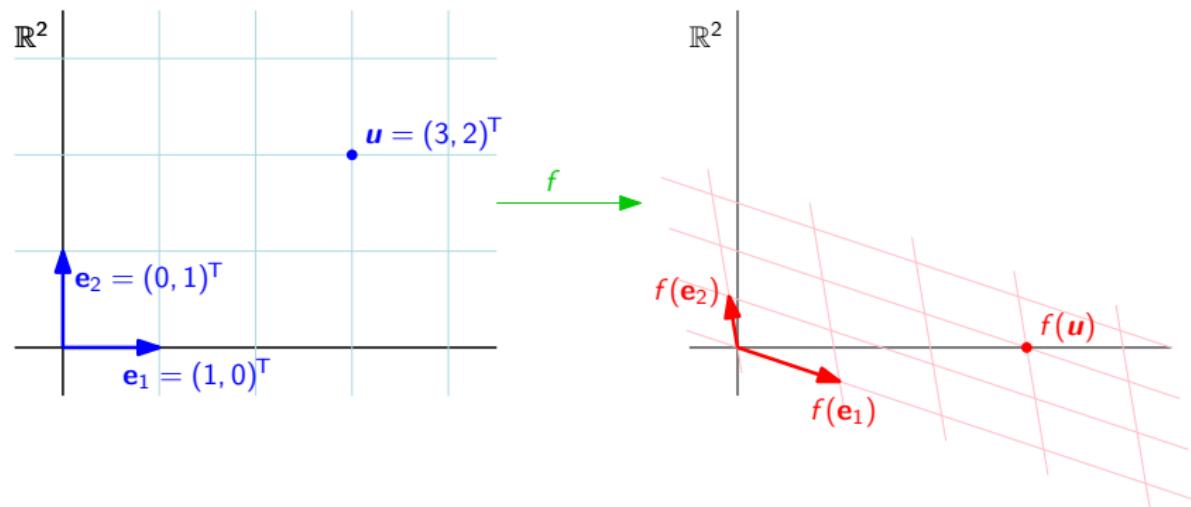
The *identity* id on U given by: $\forall \mathbf{u} \in U : \text{id}(\mathbf{u}) = \mathbf{u}$.

The identity is also an immersion of U into V when $U \subseteq V$.
Linearity of both addition and scalar multiplication is here obvious.

Geometric linear mappings

Some geometric transformations in \mathbb{R}^2 or \mathbb{R}^3 that fix the origin:

- ▶ rotation around the origin
- ▶ reflection across an axis that goes through the origin
- ▶ scaling with the center in the origin,
including non-uniform scaling and projection
- ▶ any similarity transformation that combines the above



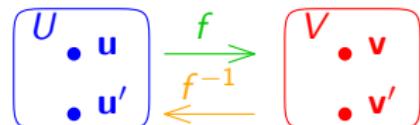
Properties of linear mappings

Observation: If $f : U \rightarrow V$,
 $g : V \rightarrow W$ are linear maps,
then $(g \circ f) : U \rightarrow W$ is linear.

Proof: $(g \circ f)(\mathbf{u} + \mathbf{v}) = g(f(\mathbf{u} + \mathbf{v})) = g(f(\mathbf{u}) + f(\mathbf{v})) =$
 $= g(f(\mathbf{u})) + g(f(\mathbf{v})) = (g \circ f)(\mathbf{u}) + (g \circ f)(\mathbf{v})$
 $(g \circ f)(t\mathbf{u}) = g(f(t\mathbf{u})) = g(tf(\mathbf{u})) = t g(f(\mathbf{u})) = t(g \circ f)(\mathbf{u})$

Observation: If $f : U \rightarrow V$ is a linear bijective mapping,
then $f^{-1} : V \rightarrow U$ is a linear map too.

Proof: For any $\mathbf{v}, \mathbf{v}' \in V$
let $\mathbf{u} = f^{-1}(\mathbf{v})$ and $\mathbf{u}' = f^{-1}(\mathbf{v}')$,
that is, $f(\mathbf{u}) = \mathbf{v}$ and $f(\mathbf{u}') = \mathbf{v}'$.



Linearity of addition: $f^{-1}(\mathbf{v} + \mathbf{v}') = f^{-1}(f(\mathbf{u}) + f(\mathbf{u}')) =$
 $f^{-1}(f(\mathbf{u} + \mathbf{u}')) = \mathbf{u} + \mathbf{u}' = f^{-1}(\mathbf{v}) + f^{-1}(\mathbf{v}')$

Linearity of scalar multiplication:

$\forall t \in F : f^{-1}(t\mathbf{v}) = f^{-1}(tf(\mathbf{u})) = f^{-1}(f(t\mathbf{u})) = t\mathbf{u} = tf^{-1}(\mathbf{v})$.

Definition: A bijective linear mapping is called an *isomorphism*.

Transformation to the vector of coordinates

Proposition: For a space U over F with a basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ the mapping $f : U \rightarrow F^n$ defined as $f(\mathbf{u}) = [\mathbf{u}]_B$ is linear.

Proof: For $\mathbf{u}, \mathbf{v} \in U$: express $\mathbf{u} = \sum_{i=1}^n a_i \mathbf{b}_i$, $\mathbf{v} = \sum_{i=1}^n c_i \mathbf{b}_i$, i.e. the coordinate vectors are $[\mathbf{u}]_B = (a_1, \dots, a_n)^\top$, $[\mathbf{v}]_B = (c_1, \dots, c_n)^\top$.

$$\begin{aligned} \text{L. of addition: } f(\mathbf{u} + \mathbf{v}) &= [\mathbf{u} + \mathbf{v}]_B = \left[\sum_{i=1}^n a_i \mathbf{b}_i + \sum_{i=1}^n c_i \mathbf{b}_i \right]_B = \\ &= \left[\sum_{i=1}^n (a_i + c_i) \mathbf{b}_i \right]_B = (a_1 + c_1, \dots, a_n + c_n)^\top = \\ &= (a_1, \dots, a_n)^\top + (c_1, \dots, c_n)^\top = [\mathbf{u}]_B + [\mathbf{v}]_B = f(\mathbf{u}) + f(\mathbf{v}) \end{aligned}$$

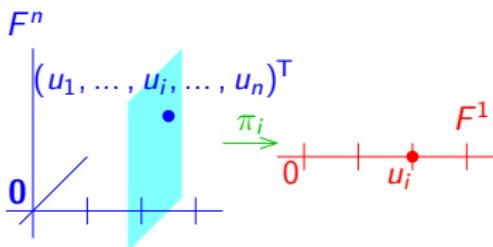
Linearity of scalar multiplication:

$$\begin{aligned} \text{For } t \in F : f(t\mathbf{u}) &= [t\mathbf{u}]_B = \left[t \sum_{i=1}^n a_i \mathbf{b}_i \right]_B = \left[\sum_{i=1}^n ta_i \mathbf{b}_i \right]_B = \\ &= (ta_1, \dots, ta_n)^\top = t(a_1, \dots, a_n)^\top = t[\mathbf{u}]_B = tf(\mathbf{u}) \end{aligned}$$

Observation: The map $\mathbf{u} \leftrightarrow [\mathbf{u}]_B$ is a bijection, i.e. an isomorphism.

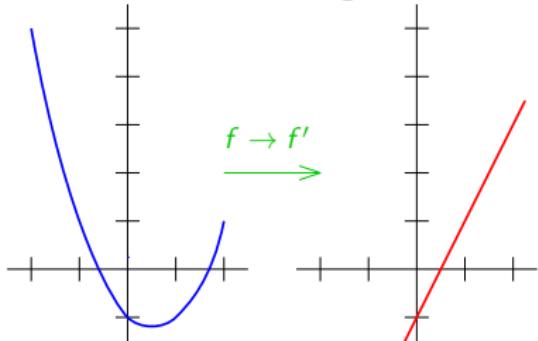
Further examples of linear maps

In arithmetic vector spaces the *projection* to the i -th coordinate, i.e. $\pi_i : F^n \rightarrow F^1$ given $\pi_i((u_1, \dots, u_n)^\top) = u_i$, is a linear mapping.



Note: We only write u_i instead formally correct $(u_i)^\top$.

On the space of functions with derivatives of all degrees



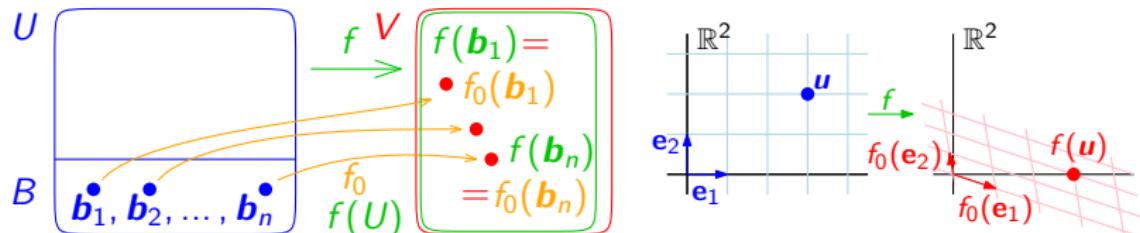
$$f(x) = x^2 - x - 1 \quad f'(x) = 2x - 1$$

differentiation is a linear map:

$$(f(x) + g(x))' = f'(x) + g'(x)$$
$$(t \cdot f(x))' = t \cdot f'(x)$$

Extension theorem

Theorem: Let U and V be spaces over F and B be a basis of U . Then for any mapping $f_0 : B \rightarrow V$ there exists a unique linear map $f : U \rightarrow V$ that extends f_0 , i.e. $\forall b \in B : f(b) = f_0(b)$.



Proof: For any $u \in U$ there are unique $n \in \mathbb{N}_0, a_1, \dots, a_n \in F \setminus 0$ and $b_1, \dots, b_n \in B$ such that $u = \sum_{i=1}^n a_i b_i$. Then $f(u)$ is uniquely determined by $f(u) = f\left(\sum_{i=1}^n a_i b_i\right) = \sum_{i=1}^n a_i f(b_i) = \sum_{i=1}^n a_i f_0(b_i)$.

Corollary: If $f : U \rightarrow V$ is linear then $\dim(U) \geq \dim(f(U))$, because the image $f(B)$ of a basis B of U generates $f(U)$.

Affine spaces

Definition: Let W be a subspace of a vector space U and $u \in U$.

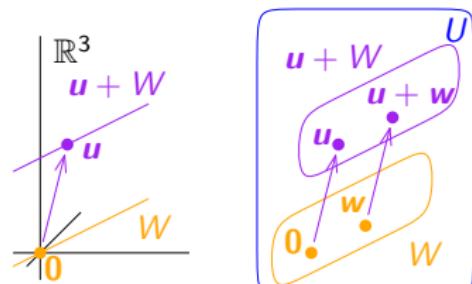
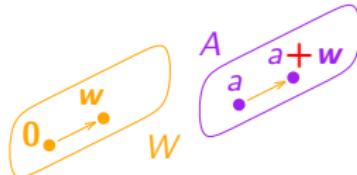
The *affine subspace* $u + W$ is the set $\{u + w : w \in W\}$.

The *dimension* of the affine space $u + W$ is the value $\dim(W)$.

Example: Lines, planes (hyperplanes) in general position in \mathbb{R}^3 (in \mathbb{R}^d).

Note: An affine space can be defined more generally as a set A together with a mapping $+$: $A \times W \rightarrow A$ satisfying:

- $\forall a \in A, \forall v, w \in W :$
$$a + (v + w) = (a + v) + w$$
- $\forall a, b \in A \exists! v \in W : a + v = b$



Elements of A are called *points* (neither scalars nor vectors).

Observation: For every $a \in A$, the following holds: $a + 0 = a$.

Proof: Let v be the unique vector satisfying $a + v = a$, then

$$a = a + v = (a + v) + v = a + (v + v) \Rightarrow v = v + v \Rightarrow v = 0.$$

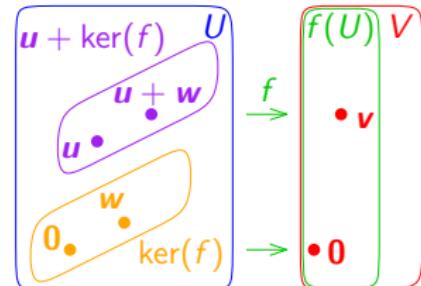
The preimage of a vector in a linear mapping

Definition:

The *kernel* of a linear mapping $f : U \rightarrow V$ is $\ker(f) = \{w \in U : f(w) = 0\}$.

Observation: Kernel is a *vector* subspace.

Observation: For $f : F^n \rightarrow F^m$ given by $f(x) = Ax$ we get $\ker(f) = \ker(A)$.



Theorem: Let $f : U \rightarrow V$ be a linear mapping. For any $v \in V$ the equation $f(x) = v$ has either no solution or the solutions form an affine subspace $u + \ker(f)$, where u is any solution of $f(x) = v$.

Examples: Solutions of $Ax = b$; the constant $+c$ in integration.

Proof: When $x \in u + \ker(f)$ then $x = u + w$ with $w \in \ker(f)$.

Now $f(x) = f(u + w) = f(u) + f(w) = v + 0 = v$.

Conversely, $f(x) = v \Rightarrow f(x - u) = f(x) - f(u) = v - v = 0$, thus $x - u \in \ker(f)$, and therefore $x \in u + \ker(f)$.

Bonus: alternative proof of $\dim R_A = \dim C_A$ over \mathbb{R}

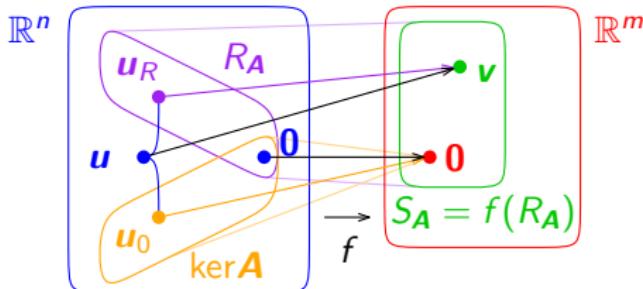
For $A \in \mathbb{R}^{m \times n}$ consider $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $f(x) = Ax$.

We know that $C_A = f(\mathbb{R}^n)$. We indeed show that $C_A = f(R_A)$.

For every $v \in C_A$, there exists $u \in \mathbb{R}^n$ such that $f(u) = v$.

Since $\dim R_A + \dim(\ker A) = n$ and $R_A \cap \ker A = \{0\}$, the union of the bases R_A and $\ker A$ is a basis for \mathbb{R}^n . The vector u can be written as $u = u_R + u_0$ with $u_R \in R_A$ and $u_0 \in \ker A$. We get:

$$v = f(u) = f(u_R + u_0) = f(u_R) + f(u_0) = f(u_R) + 0 = f(u_R)$$



From $f(R_A) = C_A$ it follows that $\dim R_A \geq \dim C_A$. Analogously, $f(R_{A^\top}) = C_{A^\top}$ yields $\dim C_A = \dim R_{A^\top} \geq \dim C_{A^\top} = \dim R_A$.

Questions to understand the lecture topic

- ▶ For which of the axioms of linear mapping is it necessary that both spaces be over the same field?
- ▶ If $f(u) = \mathbf{A}u$, $g(u) = \mathbf{B}u$, and they can be composed, what does the mapping $g \circ f$ correspond to?
- ▶ Which of the mappings in the examples are isomorphisms and which are not?
- ▶ Why is it necessary for the extension theorem to require the uniqueness of n and the coefficients a_i to be non-zero?
- ▶ What properties would the mapping f_0 from the extension theorem have to have in order for f to be injective, or to be an isomorphism?
- ▶ Why is the image $f(U)$ of the space U a subspace of V and not just a subset?

Questions to understand the lecture topic

- ▶ Is a linear mapping uniquely determined by the image of a linearly independent set or by the image of a system of generators?
- ▶ Note that images of linear mappings can be added and multiplied by a scalar, thus defining their sum and scalar multiple. What algebraic structure does the set of all linear mappings $\{f : U \rightarrow V\}$ with these two operations form?
- ▶ What is the geometric interpretation of affine spaces in \mathbb{R}^3 ?
- ▶ Can two different affine spaces of the same dimension have a nonempty intersection? Is this possible even if they are determined by the same space W ?