Linear mapping

Observation: Let A € F™*" and
f:F"— F™ be defined as f(u) = Au. Then:

» f(u+v)=A(u+v)=Au+Av = f(u)+f(v)
> f(t-u)=A(t-u)=t-Au=t-f(u)

Definition: Let U and V' be vector spaces over the same field F.
A mapping f : U — Vis a linear mapping if:

u Ve (~ef(v) V)
> Yu,veU: , Fu+ v)
f(u+v)="~f(u)+f(v) Utv e , * = f(u)+f(v)
ue *f(u)
> Yuec UVteF: tou o o f(t-u)
f(t-u)=t-f(u) =t-f(u)
0-u=0, +,0=0-f(u) ]

Observation: Each linear mapping satisfies: f(0) = 0.



Examples of simple linear mappings

Between general vector spaces f : U — V over the same F.
The trivial linear mapping given by: YVu € U : f(u) =

0}

The identity id on U given by: Vu € U :id(u) = u.
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The identity is also an immersion of U into V when U C V.
Linearity of both addition and scalar multiplication is here obvious.



Geometric linear mappings
Some geometric transformations in R? or R3 that fix the origin:
» rotation around the origin
> reflection across an axis that goes through the origin
» scaling with the center in the origin,
including non-uniform scaling and projection
» any similarity transformation that combines the above
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Properties of linear mappings

Observation: If f: U V,
g:V—=Ware Iinear_:naps, [U ua 2; CV f(u)a S W
then (gof): U — W is linear. (g o f)(u)
Proof: (go f)(u+ v) =g(f(u+v)) = g(f(u) + f(v)) =

= g(f(u)) +g(f(v)) = (gof)(u)+(gof)(v)

(g of)(tu) = g(f(tu)) = g(tf(u)) = tg(f(u)) = t(g o f)(u)

Observation: If f : U — V is a linear bijective mapping,
then f~1: V — U is a linear map too.

Proof: For any v,v/ € V ou | T oV
let u=f"1(v)and ' = F1(V),
that is, f(u) = v and f(u') = V.
Linearity of addition: f (v + v/) = f~1(f(u) + f(u)) =
fYf(u+d))=u+d =Fv)+ F V)

Linearity of scalar multiplication:

Vt e F:fl(tv) = fY(tf(u)) = F1(f(tu)) = tu = tF1(v).

Definition: A bijective linear mapping is called an isomorphism.



Transformation to the vector of coordinates

Proposition: For a space U over F with a basis B = (b, ..., b,)
the mapping f : U — F" defined as f(u) = [u]g is linear.
n n
Proof: For u,v € U: express u = >_ a;b;, v= >_ ¢;b;, i.e. the
i=1 i=1
coordinate vectors are [u]g = (a1,...,an)" [v]z = (c1,...,cn)"

L. of addition: f(u+ v) =[u+ v]|g = {an ajb; + Zn: c,-b,-] =
i=1 i=1 B

= [Z(QH- C/)bf} =(a1+cty. . antcn) =
i=1 B

= (a1,...,an) +(c1,...,cn) = [u]g + [v]g = f(u) + f(v)

Linearity of scalar multiplication:

Fort € F: f(tu) = [tU]B = [t 2": a,-b,} = |:Zn: ta,-b,} =
i=1 B i=1 B
= (tay,...,ta,)" = t(a1,...,a,)" = t[u]g = tf(u)

Observation: The map u < [u]g is a bijection, i.e. an isomorphism.



Further examples of linear maps

In arithmetic vector spaces
the projection to the i-th
coordinate, i.e. m; : F" — F!
given m;((u1,...,u,)") = u;,
is a linear mapping.

On the space of functions with
derivatives of all degrees

flx)=x>—x-1 fl(x)=2x-1
differentiation is a linear map:

(F(x) +8(x)) = '(x) + &'(x)
(t-F(x)) =t F(x)



Extension theorem

Theorem: Let U and V be spaces over F and B be a basis of U.

Then for any mapping fy : B — V there exists a unique linear map
f: U — V that extends fy, i.e. Vb € B: f(b) = fy(b).

f V |R2 R2
_= | .u
f
-
21, flen
f(U) - foler)
Proof: For any u € U there are unique n € Ny, a1,...,a, € F\0

and by, ..., b, € B such that u = " a;b;. Then f(u) is uniquely
n i=1 n n

determined by f(u) = f (Z a,-b,-) =Y aif(b;) = > aifo(by).
i=1 i=1 i=1

Corollary: If f: U — V is linear then dim(U) > dim(f(U)),
because the image f(B) of a basis B of U generates f(U).



Affine spaces
Definition: Let W be a subspace of a vector space U and u € U.
The affine subspace u+ W is the set {u +w : w € W}.
The dimension of the affine space u+ W is the value dim(W).

Example: Lines, planes (hyperplanes) R3
in general position in R? (in R9).
Note: An affine space can be defined
more generally as a set A together with //
a mapping +: Ax W — A satisfying:
> Vac AVv,we W:
at+(v+w)=(a+v)+w
> VabeceAdlve W :a+v=>b

Elements of A are called points .
Observation: For every a € A, the following holds: a 4+ 0 = a.
Proof: Let v be the unique vector satisfying a + v = a, then
a=at+v=(at+v)+v=a+(v+v) = v=v+v = v=0.



The preimage of a vector in a linear mapping

Definition: ; FOV

U
The kernel of a linear mapping f : U — V ut ker(f)
is ker(f) ={w e U: f(w) =0}. L
Observation: Kernel is a vector subspace.

Observation: For f : F" — F™ given by
f(x) = Ax we get ker(f) = ker(A).
Theorem: Let f : U — V be a linear mapping. For any v € V the
equation f(x) = v has either no solution or the solutions form an
affine subspace u + ker(f), where u is any solution of f(x) = v.

Examples: Solutions of Ax = b; the constant +c in integration.
Proof: When x € u + ker(f) then x = u+ w with w € ker(f).
Now f(x) =f(u+w)=Ff(u)+f(w)=v+0=v.

Conversely, f(x) =v = f(x—u)="f(x)—f(u)y=v—-v=0,
thus x — u € ker(f), and therefore x € u + ker(f).



Bonus: alternative proof of dim Ry = dim C4 over R

For A € R™*" consider f : R" — R™ given by f(x) = Ax.
We know that Cq = f(IR"). We indeed show that Cq = f(Ra).

For every v € Cja, there exists u € R” such that f(u) = v.

Since dim Ra + dim(ker A) = n and Ra N ker A = {0}, the union
of the bases R and ker A is a basis for R”. The vector u can be
written as u = ugr + ug with ug € Rp and ug € ker A. We get:

v = f(u) = f(uR—l-Uo) = f(UR)—I—f(uO) = f(uR)+O = f(UR)

From f(Ra) = Ca it follows that dim R4 > dim Ca. Analogously,
f(RAT) = CAT yields dim CA =dim RAT > dim CAT =dim RA.



Questions to understand the lecture topic

>

>

| 4

For which of the axioms of linear mapping is it necessary
that both spaces be over the same field?

If f(u) = Au, g(u) = Bu, and they can be composed,
what does the mapping g o f correspond to?

Which of the mappings in the examples are isomorphisms and
which are not?

Why is it necessary for the extension theorem to require the
uniqueness of n and the coefficients a; to be non-zero?
What properties would the mapping fy from the extension
theorem have to have in order for f to be injective, or to be
an isomorphism?

Why is the image f(U) of the space U a subspace of V
and not just a subset?



Questions to understand the lecture topic

» Is a linear mapping uniquely determined by the image of a
linearly independent set or by the image of a system of
generators?

» Note that images of linear mappings can be added and
multiplied by a scalar, thus defining their sum and scalar
multiple. What algebraic structure does the set of all linear
mappings {f : U — V'} with these two operations form?

» What is the geometric interpretation of affine spaces in R3?

» Can two different affine spaces of the same dimension have a
nonempty intersection? Is this possible even if they are
determined by the same space W?



