

Spaces determined by a matrix $\mathbf{A} \in F^{m \times n}$

Definition: *Kernel* is the set of solutions of $\mathbf{Ax} = \mathbf{0}$, denoted $\ker \mathbf{A}$,
column space is the subspace of F^m generated by columns of \mathbf{A} ,
row space is generated in F^n by transposes of rows of \mathbf{A} .

Example: For the matrix $\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 2 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix} \in \mathbb{Z}_3^{3 \times 4}$ we get

The row space:

$$R_{\mathbf{A}} = \left\{ (0, 0, 0, 0)^T, \quad (1, 2, 0, 1)^T, \quad (2, 1, 0, 2)^T, \quad \right. \\ \left. (2, 0, 2, 1)^T, \quad (0, 2, 2, 2)^T, \quad (1, 1, 2, 0)^T, \quad \right. \\ \left. (1, 0, 1, 2)^T, \quad (2, 2, 1, 0)^T, \quad (0, 1, 1, 1)^T \right\} \subseteq \mathbb{Z}_3^4$$

The column space:

$$C_{\mathbf{A}} = \left\{ (0, 0, 0)^T, \quad (1, 2, 1)^T, \quad (2, 1, 2)^T, \quad \right. \\ \left. (2, 0, 1)^T, \quad (0, 2, 2)^T, \quad (1, 1, 0)^T, \quad \right\} \subseteq \mathbb{Z}_3^3$$

Denote row and column spaces of \mathbf{A} by the symbols $R_{\mathbf{A}}$ and $C_{\mathbf{A}}$.

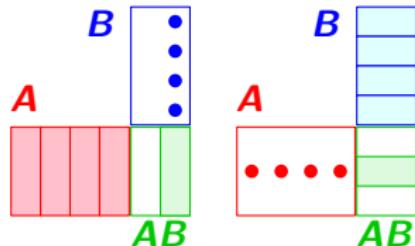
Properties

Formally: The column space is

$$\begin{aligned}C_A &= \{\mathbf{Ac} : \mathbf{c} \in F^n\} = \\&= \{\mathbf{u} \in F^m : \exists \mathbf{c} \in F^n : \mathbf{u} = \mathbf{Ac}\},\end{aligned}$$

and similarly, the row space is

$$R_A = \{\mathbf{v} \in F^n : \exists \mathbf{d} \in F^m : \mathbf{v} = \mathbf{A}^T \mathbf{d}\}.$$



Observation: The system $\mathbf{Ax} = \mathbf{b}$ has a solution iff $\mathbf{b} \in C_A$.

Observation: The kernel $\ker \mathbf{A} = \{\mathbf{x} \in F^n : \mathbf{Ax} = \mathbf{0}\}$ is a subspace.

Observation: Elementary transforms do not alter R_A nor $\ker \mathbf{A}$.

... from the systems of equations and the exchange lemma.

Theorem: For any $\mathbf{A} \in F^{m \times n} : \dim(\ker \mathbf{A}) + \text{rank } \mathbf{A} = n$

Proof: Let $d = n - \text{rank}(\mathbf{A})$ be the number of free variables and $\mathbf{x}_1, \dots, \mathbf{x}_d$ solutions of $\mathbf{Ax} = \mathbf{0}$ obtained by backward substitution.

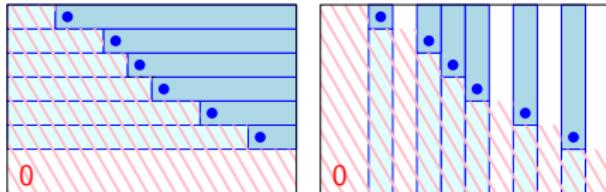
These $\mathbf{x}_1, \dots, \mathbf{x}_d$ are linearly independent, as each \mathbf{x}_i is unique with the coordinate corresponding to the i -th free variable nonzero.

A basis of $\ker \mathbf{A}$ is $\{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ and $\dim(\ker \mathbf{A}) = d = n - \text{rank}(\mathbf{A})$.

Dimensions of row and column spaces coincide

Observation: For every \mathbf{A}' in echelon form:

$$\dim R_{\mathbf{A}'} = \dim C_{\mathbf{A}'} = \text{rank } \mathbf{A}'$$



Lemma: If $\mathbf{A} \sim\sim \mathbf{A}'$, where \mathbf{A}' is in echelon form, then the columns of \mathbf{A} corresponding to the leading variables form a basis $C_{\mathbf{A}}$.

Proof: Denote $\text{rank } \mathbf{A} = r$, the indices of the leading variables $j(1), \dots, j(r)$ and the related columns of \mathbf{A} by $\mathbf{c}_{j(1)}, \dots, \mathbf{c}_{j(r)}$.

For every $\mathbf{b} \in C_{\mathbf{A}}$, the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution \mathbf{x} , in which all free variables have value 0.

From $\mathbf{b} = \sum_{i=1}^r x_{j(i)} \mathbf{c}_{j(i)}$ follows that $\text{span}(\{\mathbf{c}_{j(1)}, \dots, \mathbf{c}_{j(r)}\}) = C_{\mathbf{A}}$.

Vectors $\mathbf{c}_{j(1)}, \dots, \mathbf{c}_{j(r)}$ are linearly independent, as only $\mathbf{x} = 0$ is a solution to $\mathbf{A}\mathbf{x} = 0$, where all free variables have value 0.

Theorem: For each \mathbf{A} : $\dim R_{\mathbf{A}} = \dim C_{\mathbf{A}}$, thus $\text{rank } \mathbf{A} = \text{rank } (\mathbf{A}^T)$.

Proof: $\dim R_{\mathbf{A}} = \dim R_{\mathbf{A}'} = \dim C_{\mathbf{A}'} = \text{rank } \mathbf{A}' = \text{rank } \mathbf{A} = \dim C_{\mathbf{A}}$.

Relationship to the matrix product

Observation: For column spaces of \mathbf{A} and \mathbf{AB} : $C_{AB} \subseteq C_{\mathbf{A}}$.

Proof: For $\mathbf{A} \in F^{m \times n}$ and $\mathbf{B} \in F^{n \times p}$, it comes from the definition:
 $\{\mathbf{ABc} : \mathbf{c} \in F^p\} \subseteq \{\mathbf{Ad} : \mathbf{d} \in F^n\}$, since $\{\mathbf{Bc} : \mathbf{c} \in F^p\} \subseteq F^n$.

Observation: Analogously for row spaces: $R_{AB} \subseteq R_{\mathbf{B}}$.

Consequence: $\text{rank}(\mathbf{AB}) \leq \min\{\text{rank } \mathbf{A}, \text{rank } \mathbf{B}\}$

Beware! Column spaces \mathbf{A} and \mathbf{BA} satisfy only: $\dim C_{BA} \leq \dim C_{\mathbf{A}}$.

Example: For the product

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

we have: $\dim C_{BA} = 1 \leq 2 = \dim C_{\mathbf{A}}$. The matrix \mathbf{B} is purposely singular in order to decrease $\dim C_{BA}$ when compared to $\dim C_{\mathbf{A}}$.

Theorem: For any matrix $\mathbf{A} \in F^{m \times n}$, regular $\mathbf{R} \in F^{m \times m}$ and regular $\mathbf{R}' \in F^{n \times n}$: $\text{rank } \mathbf{A} = \text{rank}(\mathbf{RA}) = \text{rank}(\mathbf{AR}')$.

Proof: $\text{rank } \mathbf{A} \geq \text{rank}(\mathbf{RA}) \geq \text{rank}(\mathbf{R}^{-1}\mathbf{RA}) = \text{rank } \mathbf{A}$; for \mathbf{R}' too.

Relationships between row space and kernel

Observations:

- ▶ For every $\mathbf{v} \in R_{\mathbf{A}}$ and every $\mathbf{x} \in \ker \mathbf{A}$: $\mathbf{v}^T \mathbf{x} = 0$,
- ▶ for every $\mathbf{x} \in F^n$: $(\forall \mathbf{v} \in R_{\mathbf{A}}: \mathbf{v}^T \mathbf{x} = 0) \Leftrightarrow \mathbf{x} \in \ker \mathbf{A}$,
- ▶ for every $\mathbf{v} \in F^n$: $(\forall \mathbf{x} \in \ker \mathbf{A}: \mathbf{v}^T \mathbf{x} = 0) \Leftrightarrow \mathbf{v} \in R_{\mathbf{A}}$.

Proof: We choose a suitable $\mathbf{d} \in F^m$ such that $\mathbf{v} = \mathbf{A}^T \mathbf{d}$.

Then it holds that: $\mathbf{v}^T \mathbf{x} = (\mathbf{A}^T \mathbf{d})^T \mathbf{x} = \mathbf{d}^T \mathbf{A} \mathbf{x} = \mathbf{d}^T \mathbf{0} = 0$.

The first comes from the first observation and kernel definition.

The second follows from the fact that adding $\mathbf{v} \notin R_{\mathbf{A}}$ as a new row to \mathbf{A} increase rank. Some free variable become leading, which provides a construction of $\mathbf{x} \in \ker \mathbf{A}$ such that $\mathbf{v}^T \mathbf{x} \neq 0$.

Observation: For *real* matrices \mathbf{A} , we have $R_{\mathbf{A}} \cap \ker \mathbf{A} = \{\mathbf{0}\}$.

Proof: Choose $\mathbf{v} \in R_{\mathbf{A}} \cap \ker \mathbf{A}$. Since $\mathbf{v} \in R_{\mathbf{A}}$, the equation

$v_1 x_1 + \cdots + v_n x_n = 0$ is a linear combination of rows of $\mathbf{A} \mathbf{x} = \mathbf{0}$.

Since $\mathbf{v} \in \ker \mathbf{A}$, the vector \mathbf{v} solves this equation. Substitute it to obtain: $v_1 v_1 + \cdots + v_n v_n = 0$, from which on \mathbb{R} follows that $\mathbf{v} = \mathbf{0}$.

Relationships between row space and kernel

Observations:

- ▶ For every $\mathbf{v} \in R_{\mathbf{A}}$ and every $\mathbf{x} \in \ker \mathbf{A}$: $\mathbf{v}^T \mathbf{x} = 0$,
- ▶ for every $\mathbf{x} \in F^n$: $(\forall \mathbf{v} \in R_{\mathbf{A}}: \mathbf{v}^T \mathbf{x} = 0) \Leftrightarrow \mathbf{x} \in \ker \mathbf{A}$,
- ▶ for every $\mathbf{v} \in F^n$: $(\forall \mathbf{x} \in \ker \mathbf{A}: \mathbf{v}^T \mathbf{x} = 0) \Leftrightarrow \mathbf{v} \in R_{\mathbf{A}}$.

Theorem: Every subspace V of the arithmetic vector space F^n is a set of solutions to the appropriate homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Proof: From the basis V , we construct row-wise the auxiliary matrix \mathbf{B} . Similarly, from the basis $\ker \mathbf{B}$, we construct row-wise the desired matrix \mathbf{A} .

F^n

$$V = R_{\mathbf{B}} = \ker \mathbf{A} \quad \bullet \mathbf{0} \quad \ker \mathbf{B} = R_{\mathbf{A}}$$

$$\begin{aligned} \mathbf{x} \in V &\Leftrightarrow \mathbf{x} \in R_{\mathbf{B}} \Leftrightarrow \forall \mathbf{v} \in \ker \mathbf{B}: \mathbf{v}^T \mathbf{x} = 0 \Leftrightarrow \\ &\Leftrightarrow \forall \mathbf{v} \in R_{\mathbf{A}}: \quad \mathbf{v}^T \mathbf{x} = 0 \Leftrightarrow \mathbf{x} \in \ker \mathbf{A} \Leftrightarrow \mathbf{A}\mathbf{x} = \mathbf{0} \end{aligned}$$

Questions to understand the lecture topic

- ▶ How would you describe vectors from the column space of a matrix in row echelon form?
- ▶ Does this space change if the matrix is further transformed to reduced row echelon form?
- ▶ If \mathbf{A} and \mathbf{B} are matrices with the same number of columns, how can they be combined to form a matrix with kernel $\ker(\mathbf{A}) \cap \ker(\mathbf{B})$?
- ▶ Can the following hold for appropriately chosen matrices $\text{rank}(\mathbf{BA}) < \min\{\text{rank } \mathbf{A}, \text{rank } \mathbf{B}\}$?
If so, can you construct such matrices?
- ▶ How do you construct $\mathbf{x} \in \ker \mathbf{A}$ for $\mathbf{v} \notin R_{\mathbf{A}}$ so that $\mathbf{v}^T \mathbf{x} \neq 0$?