
Spaces determined by a matrix A ∈ F m×n

Definition: Kernel is the set of solutions of Ax = 0, denoted ker A,
column space is the subspace of F m generated by columns of A,
row space is generated in F n by transposes of rows of A.

Example: For the matrix A =

1 2 0 1
2 0 2 1
1 1 2 0

 ∈ Z3×4
3 we get

The row space:

RA =


(0, 0, 0, 0)T, (1, 2, 0, 1)T, (2, 1, 0, 2)T,
(2, 0, 2, 1)T, (0, 2, 2, 2)T, (1, 1, 2, 0)T,
(1, 0, 1, 2)T, (2, 2, 1, 0)T, (0, 1, 1, 1)T

 ⊆ Z4
3

The column space:

CA =


(0, 0, 0)T, (1, 2, 1)T, (2, 1, 2)T,
(2, 0, 1)T, (0, 2, 2)T, (1, 1, 0)T,
(1, 0, 2)T, (2, 2, 0)T, (0, 1, 1)T

 ⊆ Z3
3

Denote row and column spaces of A by the symbols RA and CA.



Properties
Formally: The column space is
CA = {Ac : c ∈ F n} =

= {u ∈ F m : ∃c ∈ F n : u = Ac},
and similarly, the row space is
RA = {v ∈ F n : ∃d ∈ F m : v = ATd}.
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Observation: The system Ax = b has a solution iff b ∈ CA.
Observation: The kernel ker A = {x ∈ F n : Ax = 0} is a subspace.
Observation: Elementary transforms do not alter RA nor ker A.
. . . from the systems of equations and the exchange lemma.

Theorem: For any A ∈ F m×n : dim(ker A) + rank A = n

Proof: Let d = n − rank(A) be the number of free variables and
x1, . . . , xd solutions of Ax = 0 obtained by backward substitution.
These x1, . . . , xd are linearly independent, as each xi is unique with
the coordinate corresponding to the i-th free variable nonzero.
A basis of ker A is {x1, . . . , xd} and dim(ker A) = d = n − rank(A).



Dimensions of row and column spaces coincide
Observation: For every A′

in echelon form:
dim RA′ = dim CA′ = rank A′

0 0

Lemma: If A ∼∼ A′, where A′ is in echelon form, then the columns
of A corresponding to the leading variables form a basis CA.

Proof: Denote rank A = r , the indices of the leading variables
j(1), . . . , j(r) and the related columns of A by cj(1), . . . , cj(r).
For every b ∈ CA, the system Ax = b has a unique solution x,
in which all free variables have value 0.
From b =

r∑
i=1

xj(i)cj(i) follows that span({cj(1), . . . , cj(r)}) = CA.
Vectors cj(1), . . . , cj(r) are linearly independent, as only x = 0
is a solution to Ax = 0, where all free variables have value 0.

Theorem: For each A : dim RA = dim CA, thus rank A = rank(AT).
Proof: dim RA = dim RA′ = dim CA′ = rank A′ = rank A = dim CA.



Relationship to the matrix product
Observation: For column spaces of A and AB: CAB ⊆ CA.
Proof: For A ∈ F m×n and B ∈ F n×p, it comes from the definition:
{ABc : c ∈ F p} ⊆ {Ad : d ∈ F n}, since {Bc : c ∈ F p} ⊆ F n.

Observation: Analogously for row spaces: RAB ⊆ RB.

Consequence: rank(AB) ≤ min{rank A, rank B}

Beware! Column spaces A and BA satisfy only: dim CBA ≤ dim CA.

Example: For the product

0 1 0
0 0 0
0 0 0


0 0

1 2
3 4

 =

1 2
0 0
0 0


we have: dim CBA = 1 ≤ 2 = dim CA. The matrix B is purposely
singular in order to decrease dim CBA when compared to dim CA.

Theorem: For any matrix A ∈ F m×n, regular R ∈ F m×m

and regular R ′ ∈ F n×n: rank A = rank(RA) = rank(AR ′).
Proof: rank A ≥ rank(RA) ≥ rank(R−1RA) = rank A; for R ′ too.



Relationships between row space and kernel
Observations:
▶ For every v ∈ RA and every x ∈ ker A: vTx = 0,
▶ for every x ∈ F n : (∀v ∈ RA : vTx = 0) ⇔ x ∈ ker A,
▶ for every v ∈ F n : (∀x ∈ ker A : vTx = 0) ⇔ v ∈ RA.

Proof: We choose a suitable d ∈ F m such that v = ATd .
Then it holds that: vTx = (ATd)Tx = dTAx = dT0 = 0.
The first comes from the first observation and kernel definition.
The second follows from the fact that adding v /∈ RA as a new row
to A increase rank. Some free variable become leading, which
provides a construction of x ∈ ker A such that vTx ̸= 0.

Observation: For real matrices A, we have RA ∩ ker A = {0}.
Proof: Choose v ∈ RA ∩ ker A. Since v ∈ RA, the equation
v1x1 + · · · + vnxn = 0 is a linear combination of rows of Ax = 0.
Since v ∈ ker A, the vector v solves this equation. Substitute it to
obtain: v1v1 + · · · + vnvn = 0, from which on R follows that v = 0.

Theorem: Every subspace V of the arithmetic vector space F n is
a set of solutions to the appropriate homogeneous system Ax = 0.

Proof: From the basis V , we construct row-wise the auxiliary
matrix B. Similarly, from the basis ker B, we construct row-wise
the desired matrix A.

0V = RB
F n

ker B= ker A = RA

x ∈ V ⇔ x ∈ RB ⇔ ∀v ∈ ker B : vTx = 0 ⇔
⇔ ∀v ∈ RA : vTx = 0 ⇔ x ∈ ker A ⇔ Ax = 0



Relationships between row space and kernel
Observations:
▶ For every v ∈ RA and every x ∈ ker A: vTx = 0,
▶ for every x ∈ F n : (∀v ∈ RA : vTx = 0) ⇔ x ∈ ker A,
▶ for every v ∈ F n : (∀x ∈ ker A : vTx = 0) ⇔ v ∈ RA.

Theorem: Every subspace V of the arithmetic vector space F n is
a set of solutions to the appropriate homogeneous system Ax = 0.

Proof: From the basis V , we construct row-wise the auxiliary
matrix B. Similarly, from the basis ker B, we construct row-wise
the desired matrix A.

0V = RB
F n

ker B= ker A = RA

x ∈ V ⇔ x ∈ RB ⇔ ∀v ∈ ker B : vTx = 0 ⇔
⇔ ∀v ∈ RA : vTx = 0 ⇔ x ∈ ker A ⇔ Ax = 0



Questions to understand the lecture topic

▶ How would you describe vectors from the column space of a
matrix in row echelon form?

▶ Does this space change if the matrix is further transformed to
reduced row echelon form?

▶ If A and B are matrices with the same number of columns,
how can they be combined to form a matrix with kernel
ker(A) ∩ ker(B)?

▶ Can the following hold for appropriately chosen matrices
rank(BA) < min{rank A, rank B}?
If so, can you construct such matrices?

▶ How do you construct x ∈ ker A for v /∈ RA so that vTx ̸= 0?


