
Linear independence

Definition: A set of vectors B is linearly independent, if for any
n-tuple of vectors b1, . . . , bn ∈ B the equation

n∑
i=1

aibi = 0 has only trivial solution a1 = · · · = an = 0.
In other cases the set B is linearly dependent.

Observation: If b1, . . . , bn are linearly dependent, then
n∑

i=1
aibi = 0,

where some ai ̸= 0. Hence the corresponding bi can be expressed

as a linear combination of the remaining vectors: bi =
∑
j ̸=i

−aj
ai

bj .



Examples

▶ When 0 ∈ B then B is linearly dependent
as 1 · 0 = 0 is a nontrivial linear combination.

▶ Rows or columns of I are linearly independent.
▶ Rows of a matrix in row echelon

0

form are linearly independent.
. . . a pivot cannot be eliminated

by the zeros below.
▶ In R2: B = {b} is linearly independent iff b ̸= 0;

The set C = {c1, c2} is linearly independent iff
the line determined by c1 and c2 does not contain the origin.
Any D of size at least three is linearly dependent.

▶ In the vector space of real polynomials, the infinite set
{x0, x1, x2, . . . } is linearly independent.

▶ The empty set is linearly independent.



Two distinct tests of linear independence in F n

Is B = {(2, 1, 0, 3)T, (4, 3, 1, 4)T, (0, 2, 2, 1)T, (3, 4, 1, 0)T, (0, 2, 2, 2)T}
linearly dependent or independent set in Z4

5?
a) As elementary operations do not modify the row space :

2 1 0 3
4 3 1 4
0 2 2 1
3 4 1 0
0 2 2 2

 ∼∼


2 1 0 3
0 1 1 3
0 0 1 3
0 0 0 1
0 0 0 0


We get the zero row. I.e., the
zero vector can be written as
a nontrivial linear combination,
hence B is linearly dependent.

b) By finding a nontrivial solution of a1b1 + · · · + anbn = 0.
The equation corresponds to a homogeneous system with matrix:2 4 0 3 0

1 3 2 4 2
0 1 2 1 2
3 4 1 0 2

 ∼∼

2 4 0 3 0
0 1 2 0 2
0 0 0 1 2
0 0 0 0 1


The resulting matrix contains at least one free variable : a3.
A nontrivial solution of the system, e.g. (4, 3, 1, 0, 0)T, yields
4(2, 1, 0, 3)T+ 3(4, 3, 1, 4)T+ (0, 2, 2, 1)T=0, thus B is dependent.



Properties of linear independence
Observation: If B is independent, C ⊆ B then C is independent.
Observation: If C is dependent, C ⊆ B then B is dependent.
Observation: B is independent iff ∀b ∈ B : v /∈ span(B \ v).

Proof: b ∈ span(B \ b) ⇔ b =
n∑

i=1
aibi , where b1, . . . , bn ∈ B \ b.

Proposition: If C is finite generating set of a space V and
B is linearly independent in V , then |B| ≤ |C |.
Proof: Let C = {c1, . . . , cn} and assume for a contrary that there
are distinct b1, . . . , bn+1 ∈ B. Express each bi as bi =

n∑
j=1

aijcj .

The corresponding matrix A has n + 1 rows and n columns,
hence some row is a linear combination of the others.
This combination yields also linear dependence of b1, . . . , bn+1.
Formally: ∃d = (d1, . . . , dn+1)T ∈ F n+1 \ 0: dTA = 0T ⇒
n+1∑
i=1

dibi =
n+1∑
i=1

di
n∑

j=1
aijcj =

n∑
j=1

(
n+1∑
i=1

diaij

)
cj =

n∑
j=1

0cj = 0



Distinct ways to describe a vector space

Let V = {(0, 0, 0, 0)T, (0, 1, 2, 1)T, (0, 2, 1, 2)T, (1, 0, 1, 0)T,
(1, 1, 0, 1)T, (1, 2, 2, 2)T, (2, 0, 2, 0)T, (2, 1, 1, 1)T, (2, 2, 0, 2)T, }
be a space of arithmetic vectors over Z3.

(These vectors viewed as 4-letter words over a 3-letter alphabet have
the property that any two words differ in at least two symbols.
Similar sets could be used to design error-correcting codes.)

Could V be described more efficiently than by the list of 9 values?
We may observe that these vectors are dependent, e.g. (0, 0, 0, 0)T,
(2, 1, 1, 1)T = (2, 0, 2, 0)T + (0, 2, 1, 2)T or (2, 0, 2, 0)T = 2 · (1, 0, 1, 0)T.

Repetitive removal of dependent vectors leads to a subset which is
independent but still generates the entire V .
Namely, V could be generated just by two
vectors, e.g. (0, 1, 2, 1)T, and (1, 0, 1, 0)T.

0000 0121 0212
1010 1101 1222
2020 2111 2202

Also, each vector of V is a unique linear combination of these two!



Basis
Definition: A basis of a vector space V is
a linearly independent set B that generates V .
Why is the concept of a basis so important?
▶ span(B) = V imply that every vector of V

is a linear combination of vectors of the basis B
▶ B is linearly independent, hence the above linear combination

is unique for each vector of V .

Proof: If B is linearly independent and v =
n∑

i=1
aibi =

n∑
i=1

a′
ibi , then

0 = v − v =
n∑

i=1
aibi −

n∑
i=1

a′
ibi =

n∑
i=1

(ai − a′
i)bi ⇒ ∀i : ai = a′

i .

Definition: Let B = (b1, . . . , bn) be an ordered basis of a vector
space V over F . The coordinate vector of v ∈ V with respect to
the basis B is [v ]B = (a1, . . . , an)T ∈ F n, where v =

n∑
i=1

aibi .



Examples

▶ In the arithmetic vector space F n the columns e1, . . . , en of In
form the so called standard basis E (aka canonical or natural).

▶ In R2, a set B = {b1, b2} is a basis if and only if b1 ̸= b2 and
the line determined by b1 and b2 does not contain the origin.

▶ In the vector space of real polynomials, the infinite set
{x0, x1, x2, . . . } is an example of infinite basis.

▶ In the space of polynomials of degree at most 4 we have e.g.:
[x3 + 2x − 1](x0,x1,...,x4) = (−1, 2, 0, 1, 0)T, but also
[x3 + 2x − 1](x0+x1,x1−2x2,x2,x3,x4) = (−1, 3, 6, 1, 0)T, as
x3 + 2x − 1 = −1(x0 + x1) + 3(x1 − 2x2) + 6x2 + 1x3

▶ In the vector space V = P(S) over Z2 we have e.g. a basis
from the single-element sets: [{a, c}]({a},{b},{c}) = (1, 0, 1)T.



Coordinates of a vector with respect to different bases
The coordinates of u with respect to the standard (ordered) basis
E = {e1, e2} = {(1, 0)T, (0, 1)T} are: v = [v ]K = (3, 5)T.

With respect to another basis B = {(3, 1)T, (−1, 1)T}
the same vector has the coordinates: [v ]B = (2, 3)T.
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Distinct bases — Jpeg
A vector v is an 8 × 8 cut
from a single color plane and is
normalized to (−128, 127):

Standard basis E:

[v ]E =
0 7 30 −35 29 1 −10 20

−6 −54 −15 0 −18 −69 −10 −32
−38 18 −36 58 37 18 −7 −4
17 38 27 −19 −26 −43 −2 44
26 33 44 48 42 7 −8 20
11 30 −2 32 70 25 25 17
22 −44 30 −19 14 48 55 6

−11 −16 8 6 22 −28 −10 17



Basis B from harmonic funtions:

[v ]B
.=

11 −59 16 4 −14 4 −9 −10
−6 110 −8 −30 −30 46 −19 −13
16 −84 23 5 −20 6 −12 −14

−20 −83 −29 −2 18 −4 16 27
2 91 3 −1 29 −14 −13 21
27 21 38 41 −52 −2 −40 22

−20 40 −28 41 16 −46 −12 27
−9 59 −13 −46 11 15 −58 −39


These are 64-dimensional vectors, only depicted as matrices.



Lossy compression and decompression (simplified)
11 −59 16 4 −14 4 −9 −10
−6 110 −8 −30 −30 46 −19 −13
16 −84 23 5 −20 6 −12 −14

−20 −83 −29 −2 18 −4 16 27
2 91 3 −1 29 −14 −13 21
27 21 38 41 −52 −2 −40 22

−20 40 −28 41 16 −46 −12 27
−9 59 −13 −46 11 15 −58 −39


divide component-wise by the
so-called quantization matrix

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


and round

3 −1 −2 −1 1 0 0 1
−5 2 0 −1 0 0 0 0
−4 −2 0 1 0 0 0 1
5 0 0 1 0 0 0 0
1 2 1 −1 0 0 0 0
1 −1 1 0 −1 0 0 0
1 0 −1 0 0 0 0 0
1 0 −1 0 0 0 0 0



multiply by the quant. matrix
48 −11 −20 −16 24 0 0 61

−60 24 0 −19 0 0 0 0
−56 −26 0 24 0 0 0 56
70 0 0 29 0 0 0 0
18 44 37 −56 0 0 0 0
24 −35 55 0 −81 0 0 0
49 0 −78 0 0 0 0 0
72 0 −95 0 0 0 0 0


convert from the basis B to E

1 0 39 −16 23 −13 23 0
1 −53 −40 −38 −3 −61 −36 −14

−41 −15 32 47 55 20 −2 −24
15 33 12 −38 −71 −36 12 43
31 27 48 82 56 5 −11 18
22 −1 6 23 53 35 25 13
1 −5 7 −33 25 38 62 21

−2 −29 17 −3 34 −38 −4 5


Data: 27 ints. ∈ {−5, . . . , 5} \ 0
Average hue deviation < 6%

Original: Restored:



Existence of a basis

Observation: A set B is a basis of a vector space V ,
if and only if span(B) = V and ∀b ∈ B : b /∈ span(B \ b).

Corollary: Every finite generating set C of a vector space V
contains a basis B as a subset.
Proof: First set B = C . Then iteratively test all b ∈ B
whether b ∈ span(B \ b). If so then remove b from B.

Theorem: Every vector space has a basis.
. . . for finitely generated it is proven above;
for infinitely generated we omit a proof.
(This part of the theorem is equivalent to the axiom of choice.)



Questions to understand the lecture topic

▶ How can we select as many linearly independent columns as
possible from a matrix in echelon form?

▶ How would you test whether a set of even subgraphs is
linearly independent?

▶ Does the uniqueness of the coefficients of the linear
combination hold for the linearly independent set B, even if B
is infinite and the combinations are expressed relative to other
subsets of B?

▶ What does a basis of the space of matrices F m×n look like?


