

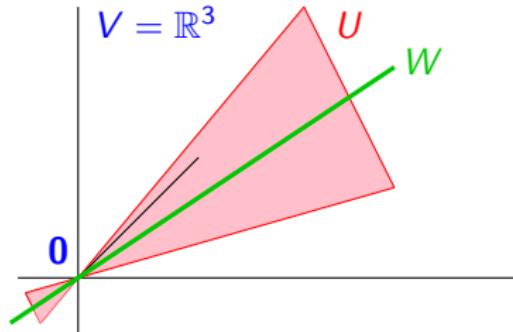
Subspace

Definition: Let V be a vector space over F then a *subspace* U is a nonempty subset of V satisfying:

- ▶ $\forall \mathbf{u}, \mathbf{v} \in U : \mathbf{u} + \mathbf{v} \in U$
- ▶ $\forall \mathbf{v} \in U \forall a \in F : a\mathbf{v} \in U$

Example: A plane U through the origin $\mathbf{0}$ is a subspace of $V = \mathbb{R}^3$.

A line $W \subset U$ through the origin is a subspace of U and of V as well.



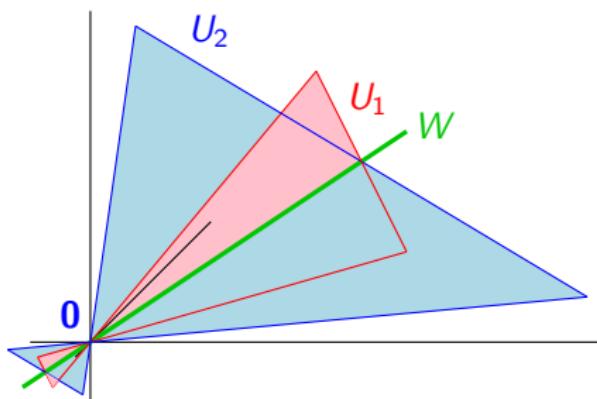
Polynomials of degree ≤ 5 form a subspace of the function space.

Observation: Any subspace is also a vector space, because the existential axioms follow the closure: $\mathbf{0} = \mathbf{0}\mathbf{v} \in U$ and $-\mathbf{v} = (-1)\mathbf{v} \in U$. Other axioms hold already on V .

Intersection of subspaces

Theorem: Let $(U_i, i \in I)$ be any system of subspaces of a space V . The intersection of this system $\bigcap_{i \in I} U_i$ is also a subspace of V .

Example: Planes U_1 and U_2 are subspaces of the vector space \mathbb{R}^3 . Their intersection is the line W . It is also a subspace of \mathbb{R}^3 .



Intersection of subspaces

Theorem: Let $(U_i, i \in I)$ be any system of subspaces of a space V . The intersection of this system $\bigcap_{i \in I} U_i$ is also a subspace of V .

Proof: Let $W = \bigcap_{i \in I} U_i$. We show that W is closed on $+$ and \cdot .

$\forall \mathbf{u}, \mathbf{v} \in W :$

$\mathbf{u}, \mathbf{v} \in W \Rightarrow \forall i \in I : \mathbf{u}, \mathbf{v} \in U_i \Rightarrow \forall i \in I : \mathbf{u} + \mathbf{v} \in U_i \Rightarrow \mathbf{u} + \mathbf{v} \in W$

$\forall a \in F, \mathbf{v} \in W :$

$\mathbf{v} \in W \Rightarrow \forall i \in I : \mathbf{v} \in U_i \Rightarrow \forall i \in I : a\mathbf{v} \in U_i \Rightarrow a\mathbf{v} \in W$

Note that when $I = \emptyset$, then the empty intersection $W = \bigcap_{i \in \emptyset} U_i = V$ is a subspace of V itself.

Subspace generated by a set, linear combination

Definition: The subspace of a vector space V *generated* by a set S is the intersection of all subspaces U of V that contain S .

Formally $\text{span}(S) = \bigcap \{U : S \subseteq U, U \text{ is a subspace of } V\}$

It is also called *linear hull/span* of S and may be denoted by $\mathcal{L}(S)$.

Examples: For $V = \mathbb{R}^3$, $\text{span}(\{(2, 2, 2)^T\}) = \{(a, a, a)^T, a \in \mathbb{R}\}$

... the line containing points having all three coordinates identical

$\text{span}(\{(1, 0, 0)^T, (0, 1, 0)^T\}) = \{(a, b, 0)^T, a, b \in \mathbb{R}\}$

... the plane determined by the first two axes

Definition: A *linear combination* of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k \in V$ over F is any vector $\mathbf{u} = a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k$ where $a_1, \dots, a_k \in F$.

Theorem: If V is a vector space over F and S is a subset of V , then $\text{span}(S)$ is the set of all linear combinations of vectors from S .

Example for $W = \{x : Ax = 0\}$

For $A = \begin{pmatrix} 1 & -2 & 4 & 0 & 3 \\ -2 & 4 & -6 & 6 & 0 \\ 4 & -8 & 13 & -9 & -4 \\ 3 & -6 & 9 & -9 & 1 \end{pmatrix} \sim \sim \begin{pmatrix} 1 & -2 & 4 & 0 & 3 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

we solve $W = \{p_1(2, 1, 0, 0, 0)^T + p_2(12, 0, -3, 1, 0)^T : p_1, p_2 \in \mathbb{R}\}$

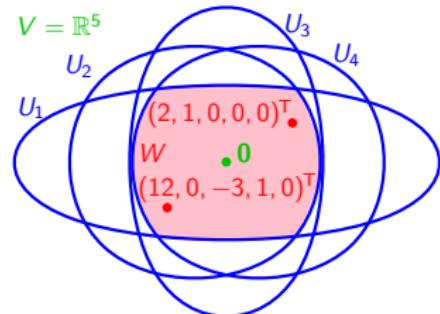
1. W could be viewed the *intersection* of the following subspaces:

$$\begin{array}{ll} U_1 = \{x : (1, -2, 4, 0, 3) \cdot x = 0\} & \text{Each } U_i \text{ corresponds to} \\ U_2 = \{x : (-2, 4, -6, 6, 0) \cdot x = 0\} & \text{one equation of the system} \\ U_3 = \{x : (4, -8, 13, -9, -4) \cdot x = 0\} & \text{and is a } \textcolor{green}{\text{hyperplane}} \text{ in } \mathbb{R}^5. \\ U_4 = \{x : (3, -6, 9, -9, 1) \cdot x = 0\} & W = U_1 \cap U_2 \cap U_3 \cap U_4 \end{array}$$

2. The same subspace W was already described as a *set of linear combinations*

$$W = \text{span}((2, 1, 0, 0, 0)^T, (12, 0, -3, 1, 0)^T)$$

Correctness of Gaussian elimination and backward substitution yields that both ways describe the same space in \mathbb{R}^5 .



Proof of the theorem

Theorem: If V is a vector space over F and S is a subset of V , then $\text{span}(S)$ is the set of all linear combinations of vectors from S .

Denote $W_1 = \bigcap\{U : S \subseteq U, U \text{ is subspace of } V\} = \text{span}(S)$ and $W_2 = \left\{ \sum_{i=1}^k a_i \mathbf{v}_i : k \in \mathbb{N}, a_i \in F, \mathbf{v}_i \in S \right\}$. Goal $W_1 = W_2$.

W_2 is a subspace, since it is closed on multiples by a scalar $b \in F$:

$$\mathbf{u} \in W_2 \Rightarrow \mathbf{u} = \sum_{i=1}^k a_i \mathbf{v}_i \Rightarrow b\mathbf{u} = b \sum_{i=1}^k a_i \mathbf{v}_i = \sum_{i=1}^k (ba_i) \mathbf{v}_i \Rightarrow b\mathbf{u} \in W_2$$

analogously also on addition: $\mathbf{u}, \mathbf{u}' \in W_2 \Rightarrow \dots \Rightarrow \mathbf{u} + \mathbf{u}' \in W_2$

Since $S \subseteq W_2$, we have W_2 among the intersecting subspaces U .
Hence $W_1 \subseteq W_2$.

Every U contains S and is closed on addition and scalar multiples.
Thus every U contains all linear combinations of vectors of S .
Hence $\forall U : W_2 \subseteq U \Rightarrow W_2 \subseteq W_1$.

Questions to understand the lecture topic

- ▶ Can an infinite number of subspaces have a non-empty intersection?
- ▶ If u is a linear combination of vectors v_1, \dots, v_k and u' is a linear combination of w_1, \dots, w_l , can the sum $u + u'$ be expressed as a linear combination of vectors $v_1, \dots, v_k, w_1, \dots, w_l$?

How does this relate to the linear hull of an infinite set S ?