

Vector space

Definition: A *vector space* $(V, +, \cdot)$ over a field $(F, +, \cdot)$ is a set V with a binary operation $+$ on V and a binary operation $\cdot : F \times V \rightarrow V$ called *scalar multiplication* s.t.:

- ▶ $(V, +)$ is an Abelian group
- ▶ $\forall a, b \in F \ \forall v \in V : (a \cdot b) \cdot v = a \cdot (b \cdot v)$
- ▶ $\forall v \in V : 1 \cdot v = v$
- ▶ $\forall a, b \in F \ \forall v \in V : (a + b) \cdot v = (a \cdot v) + (b \cdot v)$
- ▶ $\forall a \in F \ \forall u, v \in V : a \cdot (u + v) = (a \cdot u) + (a \cdot v)$

Elements of F are called *scalars*, elements of V are called *vectors*.

Distinguish the zero scalar $0 \in F$ and the zero vector $0 \in V$.

We have opposite scalars $-a \in F$ and opposite vectors $-v \in V$.

There are inverse scalars $a^{-1} \in F$ but *no inverse vectors* v^{-1} !

Products $v \cdot a$ and $v \cdot u$ are not defined and are *formally wrong!*

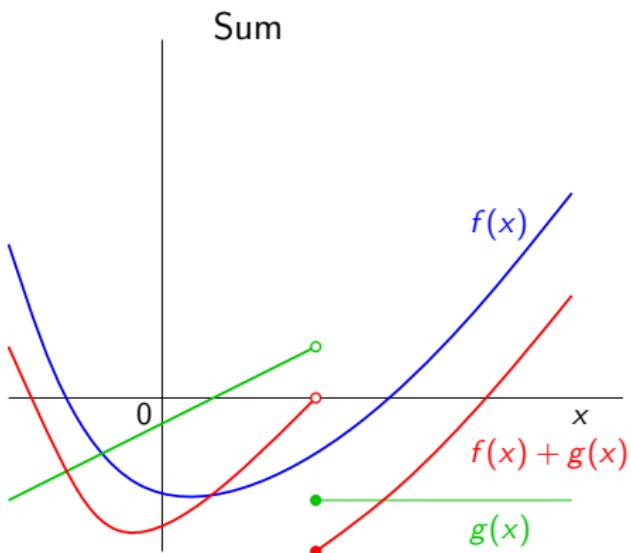
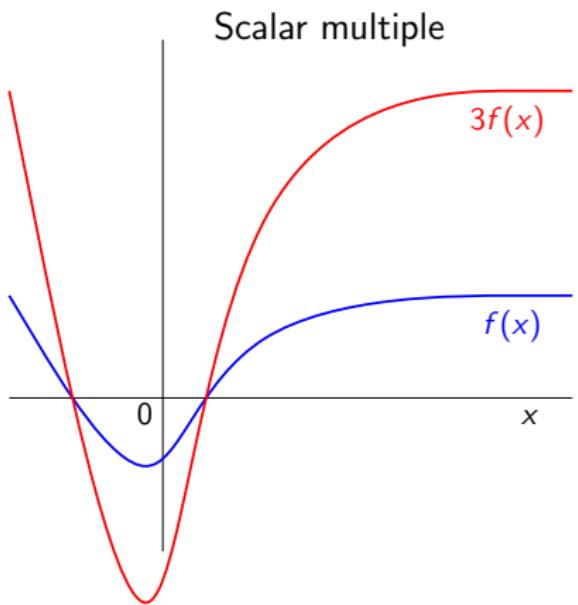
The product symbol \cdot is often omitted and has priority to $+$.

Examples

- ▶ The *arithmetic* vector space F^n of dimension n over F .
Vectors are ordered n -tuples of elements of F .
Additions and scalar multiplications are done componentwise.
Any field F yields the vector space F^1 of the same cardinality.
- ▶ $F^{m \times n}$... matrices of order $m \times n$ over F .
- ▶ $V = \{\mathbf{0}\}$ the *trivial* vector space over any field F .
- ▶ Polynomials with coefficients in F .
- ▶ Polynomials of bounded degree.

The vector space of real functions over the field \mathbb{R}

Vectors f, g are the real functions of real variable



Set systems as vector spaces

Let \mathcal{A} be a system of subsets of a set S that is closed under taking symmetric difference Δ .

Then $(\mathcal{A}, \Delta, \cdot)$ is a vector space over \mathbb{Z}_2 , where \cdot is defined as:

$0 \cdot A = \emptyset$, the neutral element of Δ , and $1 \cdot A = A$ for all $A \in \mathcal{A}$.

Observe that $\forall A, B, C \in \mathcal{A} : (A \Delta B) \Delta C = A \Delta (B \Delta C)$,

since the result contains those elements of S that belong to an odd number of sets A, B and C .

$$\left(\begin{array}{c} \text{cyan} \\ \text{purple} \\ \text{yellow} \end{array} \right) \Delta \left(\begin{array}{c} \text{purple} \\ \text{yellow} \end{array} \right) = \left(\begin{array}{c} \text{cyan} \\ \text{blue} \\ \text{yellow} \end{array} \right) \Delta \left(\begin{array}{c} \text{blue} \\ \text{yellow} \end{array} \right) = \left(\begin{array}{c} \text{cyan} \\ \text{blue} \\ \text{yellow} \end{array} \right)$$
$$\left(\begin{array}{c} \text{cyan} \\ \text{purple} \\ \text{yellow} \end{array} \right) \Delta \left(\begin{array}{c} \text{purple} \\ \text{yellow} \\ \text{red} \end{array} \right) = \left(\begin{array}{c} \text{cyan} \\ \text{yellow} \\ \text{red} \end{array} \right) \Delta \left(\begin{array}{c} \text{yellow} \\ \text{red} \end{array} \right) = \left(\begin{array}{c} \text{cyan} \\ \text{red} \end{array} \right)$$

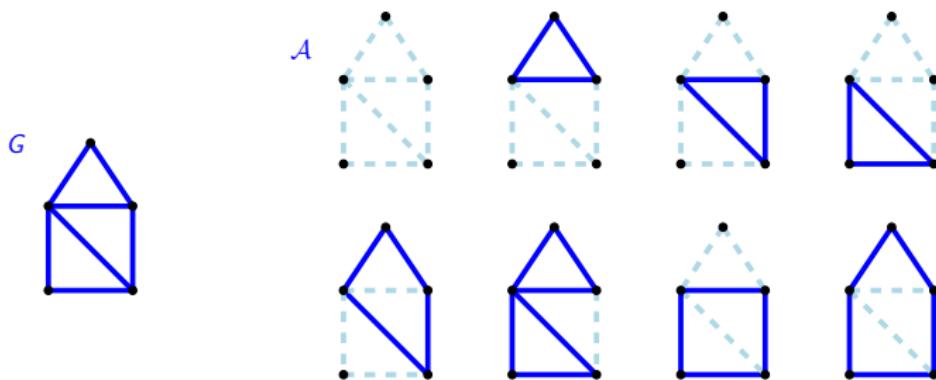
We may represent any $A \in \mathcal{A}$ by its *characteristic function*

$$\chi_A : S \rightarrow \mathbb{Z}_2 \text{ defined as } \chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Observation: The set $A \Delta B$ has the characteristic function $\chi_{A \Delta B} = \chi_A + \chi_B$, since $1 + 1 = 0$ in \mathbb{Z}_2 .

A vector space on graphs

Let $S = E_G$ and \mathcal{A} contain those edge sets A such that every vertex of G is incident with an even number of edges in A . Such sets A induce the so called *even subgraphs* of G .



Observe that Δ preserves the even degree, since the symmetric difference of two sets of **even** cardinality, namely the **edges** incident to a **vertex**, has also an **even** cardinality.

$$|A \Delta B| = |A| + |B| - 2|A \cap B|$$

Properties of vector spaces

Since $(V, +)$ is a group, we have already proved:

- ▶ uniqueness of the vector $\mathbf{0}$,
- ▶ uniqueness of $-\mathbf{u}$,
- ▶ correctness of equiv. transforms: $\mathbf{u} = \mathbf{v} \Leftrightarrow \mathbf{u} + \mathbf{w} = \mathbf{v} + \mathbf{w}$,
- ▶ solubility of equations: $\mathbf{x} + \mathbf{u} = \mathbf{v} \Leftrightarrow \mathbf{x} = \mathbf{v} - \mathbf{u}$.

Observation: For any $\mathbf{v} \in V$ and $a \in F$ holds: $0\mathbf{v} = a\mathbf{0} = \mathbf{0}$.

Proof:

$$0\mathbf{v} = 0\mathbf{v} + \mathbf{0} = 0\mathbf{v} + 0\mathbf{v} - 0\mathbf{v} = (0 + 0)\mathbf{v} - 0\mathbf{v} = 0\mathbf{v} - 0\mathbf{v} = \mathbf{0}$$

$$a\mathbf{0} = a\mathbf{0} + \mathbf{0} = a\mathbf{0} + a\mathbf{0} - a\mathbf{0} = a(0 + 0) - a\mathbf{0} = a\mathbf{0} - a\mathbf{0} = \mathbf{0}$$

Observation: For any $\mathbf{v} \in V$ holds $(-1)\mathbf{v} = -\mathbf{v}$.

$$(-1)\mathbf{v} + \mathbf{v} = (-1)\mathbf{v} + 1\mathbf{v} = (-1 + 1)\mathbf{v} = 0\mathbf{v} = \mathbf{0}$$

Observation: If $a\mathbf{v} = \mathbf{0}$ then $a = 0$ or $\mathbf{v} = \mathbf{0}$.

$$\text{Proof: If } a \neq 0 \text{ then } \mathbf{v} = 1\mathbf{v} = a^{-1}a\mathbf{v} = a^{-1}\mathbf{0} = \mathbf{0}.$$

Questions to understand the lecture topic

- ▶ Which axioms can be used when working in vector spaces, including those in the definition of a field and a group?
- ▶ Which operations can be performed with arithmetic vectors?
- ▶ Which operations with polynomials are vector space operations?
- ▶ How would you express the solution to the equation $ax + u = v$?
Which axioms yield the formula for the solution?