
Group of permutations
Definition: A permutation on the set {1, 2, . . . , n} is a bijective
mapping p : {1, 2, . . . , n} → {1, 2, . . . , n}.

A permutation can be described by a table,
i 1 2 3

p(i) 1 3 2
shortly by its 2nd row (1, 3, 2)
by a bipartite graph

1 2 3

1 2 3
by the graph of its cycles 1 2 3 or their list (1)(2, 3)
by the so called permutation matrix P

where (P)i ,j =
{
1 when p(i) = j
0 otherwise

P =

1 0 0
0 0 1
0 1 0


Observation: For any A and P of matching orders,
PA shuffles the rows of A according to p, while AP the columns:1 0 0
0 0 1
0 1 0

 1 2 3
4 5 6
7 8 9

 =

1 2 3
7 8 9
4 5 6

,

1 2 3
4 5 6
7 8 9

 1 0 0
0 0 1
0 1 0

 =

1 3 2
4 6 5
7 9 8





Group of permutations
Definition: A permutation on the set {1, 2, . . . , n} is a bijective
mapping p : {1, 2, . . . , n} → {1, 2, . . . , n}.

Observation: The set Sn of all permutations on n elements with
the composition operation ◦ form the symmetric group (Sn, ◦).
Notation for the composition: (q ◦ p)(i) = q(p(i)).

i p(i) q(p(i))p q

q ◦ p

(q ◦ p)(i)
=

Proof: A composition of two permutations is a permutation:
i 6= j =⇒ p(i) 6= p(j) =⇒ q(p(i)) 6= q(p(j)) . . . q ◦ p is injective.
(∀i ∃j : q(j) = i) ∧ (∀j ∃k : p(k) = j)⇒ (∀i ∃k : q(p(k)) = i)

. . . q ◦ p is surjective.
The composition is associative: (r ◦ q) ◦ p = r ◦ (q ◦ p).
The identity id ∈ Sn given by ∀i : id(i) = i is the neutral element.
The inverse permutation is obtained by arrow reversal:
p(i) = j ⇐⇒ p−1(j) = i .

i
p

j

p−1
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k

= p(k)

p q
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j

= q(j)

i
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1 p q

q ◦ p

r

n

1

n

1

n

1

n

r ◦ qp

r
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The group S3

The ground set:

{(1, 2, 3), (1, 3, 2), (3, 2, 1), (2, 1, 3), (2, 3, 1), (3, 1, 2)} =
{ id , p1 , p2 , p3 , r+ , r− }

1

23

id = (1, 2, 3)

1

23

r+ = (2, 3, 1)

1

23

r− = (3, 1, 2)

1

23

p1 = (1, 3, 2)

1

23

p2 = (3, 2, 1)

1

23

p3 = (2, 1, 3)

The composition operation:
◦ id p1 p2 p3 r+ r−
id id p1 p2 p3 r+ r−
p1 p1 id r+ r− p2 p3
p2 p2 r− id r+ p3 p1
p3 p3 r+ r− id p1 p2
r+ r+ p3 p1 p2 r− id
r− r− p2 p3 p1 id r+

Inverse elements:
p id p1 p2 p3 r+ r−

p−1 id p1 p2 p3 r− r+

1 2 3

1 2 3

p1

p3
1 2 3

1 2 3

1 2 3

p1

p3

1 2 3
p1 ◦ p3 p3 ◦ p1

The composition is not commutative: p1 ◦ p3 = r− 6= r+ = p3 ◦ p1
(1, 3, 2) ◦ (2, 1, 3) = (3, 1, 2) 6= (2, 3, 1) = (2, 1, 3) ◦ (1, 3, 2).
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Permutation properties

Definition: A fixed point is i : p(i) = i , a trivial cycle of length 1.
Definition: A transposition has only one nontrivial cycle of length 2.
Observation: Any permutation can be factorized to transpositions.
Proof: A cycle (1, . . . , k) can be factorized e.g. by:
(1, 2, . . . , k) = (1, k)◦(1, 2, . . . , k−1) = (1, k)◦(1, k−1)◦· · ·◦(1, 2)

1

2

3

k − 1

k 1

2

3

k − 1

k 1

2

3

k − 1

k

(1, 2, . . . , k) = (1, k) ◦ (1, 2, . . . , k − 1)

Definition: An inversion of p is a pair (i , j) : i < j and p(i) > p(j).
Definition: The sign of a permutation p is sgn(p) = (−1)#inver. of p.
Permutations with positive sign are even; with negative are odd.
Observation: Every transposition (i , j) has negative sign.
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1 i j n

1 n

p

i j

k

k
# inversions = 2(j − i − 1) + 1



Sign of composed permutation
Theorem: For any p, q ∈ Sn : sgn(q ◦ p) = sgn(p) sgn(q).
Proof: #inversions of (q ◦ p) = #inver. of p + #inver. of q −

− 2|{(i , j) : i < j ∧ p(i) > p(j) ∧ q(p(i)) < q(p(j))}|

p

q
q ◦ p

i j

p(j) p(i)

q(p(i)) q(p(j))

an inversion of q ◦ p corresponds
to an inversion of p or of q

inversions of p and q
cancel each other

Consequences:
sgn(p−1) = sgn(p)

. . . because sgn(p) sgn(p−1) = sgn(p−1 ◦ p) = sgn(id) = 1
sgn(p) = (−1)#transpositions of any factorization of p into transpositions

sgn(p) = (−1)#even cycles of p

. . . even cycles decompose into odd number of transpositions.


