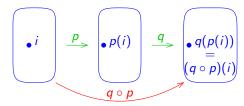
Definition: A *permutation* on the set $\{1, 2, ..., n\}$ is a bijective mapping $p: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$. A permutation can be described by a table, $\frac{i}{p(i)} = \frac{1}{2} + \frac{2}{3}$ shortly by its 2nd row (1,3,2) by a bipartite graph 1 2 3by the graph of its cycles 1 2 = 3 or their list (1)(2,3)by the so called *permutation matrix* \boldsymbol{P} where $(\boldsymbol{P})_{i,j} = \begin{cases} 1 & \text{when } \boldsymbol{p}(i) = j \\ 0 & \text{otherwise} \end{cases}$ $\boldsymbol{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Observation: For any A and P of matching orders, *PA* shuffles the rows of A according to p, while AP the columns:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 4 & 5 & 6 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ 4 & 6 & 5 \\ 7 & 9 & 8 \end{pmatrix}$$

Definition: A *permutation* on the set $\{1, 2, ..., n\}$ is a bijective mapping $p : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

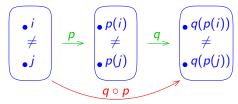
Observation: The set S_n of all permutations on n elements with the composition operation \circ form the symmetric group (S_n, \circ) . Notation for the composition: $(q \circ p)(i) = q(p(i))$.



Definition: A *permutation* on the set $\{1, 2, ..., n\}$ is a bijective mapping $p : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Observation: The set S_n of all permutations on n elements with the composition operation \circ form the symmetric group (S_n, \circ) . Notation for the composition: $(q \circ p)(i) = q(p(i))$.

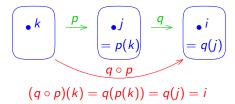
Proof: A composition of two permutations is a permutation: $i \neq j \Longrightarrow p(i) \neq p(j) \Longrightarrow q(p(i)) \neq q(p(j)) \ldots q \circ p$ is injective.



Definition: A *permutation* on the set $\{1, 2, ..., n\}$ is a bijective mapping $p : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Observation: The set S_n of all permutations on n elements with the composition operation \circ form the symmetric group (S_n, \circ) . Notation for the composition: $(q \circ p)(i) = q(p(i))$.

Proof: A composition of two permutations is a permutation: $i \neq j \Longrightarrow p(i) \neq p(j) \Longrightarrow q(p(i)) \neq q(p(j)) \dots q \circ p$ is injective. $(\forall i \exists j : q(j) = i) \land (\forall j \exists k : p(k) = j) \Rightarrow (\forall i \exists k : q(p(k)) = i)$ $\dots q \circ p$ is surjective.

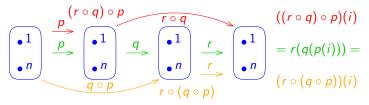


Definition: A *permutation* on the set $\{1, 2, ..., n\}$ is a bijective mapping $p : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Observation: The set S_n of all permutations on n elements with the composition operation \circ form the symmetric group (S_n, \circ) . Notation for the composition: $(q \circ p)(i) = q(p(i))$.

Proof: A composition of two permutations is a permutation: $i \neq j \Longrightarrow p(i) \neq p(j) \Longrightarrow q(p(i)) \neq q(p(j)) \dots q \circ p$ is injective. $(\forall i \exists j : q(j) = i) \land (\forall j \exists k : p(k) = j) \Rightarrow (\forall i \exists k : q(p(k)) = i)$ $\dots q \circ p$ is surjective.

The composition is associative: $(r \circ q) \circ p = r \circ (q \circ p)$.



Definition: A *permutation* on the set $\{1, 2, ..., n\}$ is a bijective mapping $p : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Observation: The set S_n of all permutations on n elements with the composition operation \circ form the symmetric group (S_n, \circ) . Notation for the composition: $(q \circ p)(i) = q(p(i))$.

Proof: A composition of two permutations is a permutation: $i \neq j \Longrightarrow p(i) \neq p(j) \Longrightarrow q(p(i)) \neq q(p(j)) \dots q \circ p$ is injective. $(\forall i \exists j : q(j) = i) \land (\forall j \exists k : p(k) = j) \Rightarrow (\forall i \exists k : q(p(k)) = i)$ $\dots q \circ p$ is surjective.

The composition is associative: $(r \circ q) \circ p = r \circ (q \circ p)$.

The *identity* $id \in S_n$ given by $\forall i : id(i) = i$ is the neutral element.

$$\begin{bmatrix} \bullet 1 \\ \bullet i \\ \bullet n \end{bmatrix} \xrightarrow{id} \begin{bmatrix} \bullet 1 \\ \bullet i \\ \bullet n \end{bmatrix}$$

Definition: A *permutation* on the set $\{1, 2, ..., n\}$ is a bijective mapping $p : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Observation: The set S_n of all permutations on n elements with the composition operation \circ form the symmetric group (S_n, \circ) . Notation for the composition: $(q \circ p)(i) = q(p(i))$.

Proof: A composition of two permutations is a permutation: $i \neq j \Longrightarrow p(i) \neq p(j) \Longrightarrow q(p(i)) \neq q(p(j)) \dots q \circ p$ is injective. $(\forall i \exists j : q(j) = i) \land (\forall j \exists k : p(k) = j) \Rightarrow (\forall i \exists k : q(p(k)) = i)$ $\dots q \circ p$ is surjective.

The composition is associative: $(r \circ q) \circ p = r \circ (q \circ p)$.

The *identity* $id \in S_n$ given by $\forall i : id(i) = i$ is the neutral element.

The inverse permutation is obtained by arrow reversal:

 $p(i) = j \iff p^{-1}(j) = i.$

$$\underbrace{\bullet^{i}}_{p} \xrightarrow{p}_{p} \underbrace{\bullet^{j}}_{p} \underbrace{\bullet^{j}}_{p}$$

The group S_3

The ground set:

 $\{(1,2,3),(1,3,2),(3,2,1),(2,1,3),(2,3,1),(3,1,2)\} =$ id , p_1 , p_2 , p_3 , r_+ , r_- } 2 ►3 id = (1, 2, 3) $r_+ = (2, 3, 1)$ $r_- = (3, 1, 2)$ >3 3 ____ 2 $p_3 = (2, 1, 3)$

 $p_1 = (1, 3, 2)$ $p_2 = (3, 2, 1)$

The group S_3

The ground set:

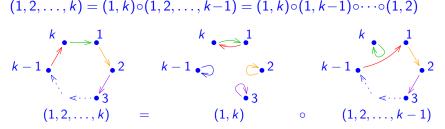
 $\{(1,2,3),(1,3,2),(3,2,1),(2,1,3),(2,3,1),(3,1,2)\} =$ $\{ id , p_1 , p_2 , p_3 , r_+ , r_- \}$

The composition operation: Inverse elements:

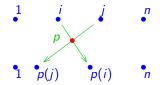
0	id	p_1	p 2	p 3	<i>r</i> +	<i>r</i> _	р	id	p 1	p ₂	p 3	<i>r</i> +	<i>r</i>	
id	id	<i>p</i> 1	p ₂	<i>p</i> 3	<i>r</i> +	<i>r_</i>	p^{-1}	id	p 1	p 2	p 3	<i>r_</i>	<i>r</i> +	
<i>p</i> 1	<i>p</i> 1	id	<i>r</i> +	<i>r</i> _	p ₂	p 3								
p ₂	<i>p</i> ₂	<i>r</i> _	id	<i>r</i> +	p 3	p_1		$\begin{array}{cccc} p_1 \circ p_3 & p_3 \circ p_1 \\ 1 & 2 & 3 & 1 & 2 & 3 \end{array}$						
<i>p</i> 3	<i>p</i> 3	<i>r</i> +	<i>r_</i>	id	p_1	p ₂	Da	1 2						
<i>r</i> +	<i>r</i> +	p 3	p_1	p 2	<i>r_</i>	id		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
<i>r</i> _	<i>r_</i>	p ₂	p 3	p_1	id	<i>r</i> +	p_1	1	\sim		\times		p 3	
									2 3		1 2	2 3		

The composition is not commutative: $p_1 \circ p_3 = r_- \neq r_+ = p_3 \circ p_1$ $(1,3,2) \circ (2,1,3) = (3,1,2) \neq (2,3,1) = (2,1,3) \circ (1,3,2).$

Definition: A fixed point is i : p(i) = i, a trivial cycle of length 1. Definition: A transposition has only one nontrivial cycle of length 2. Observation: Any permutation can be factorized to transpositions. Proof: A cycle (1, ..., k) can be factorized e.g. by: $(1, 2, ..., k) = (1, k) \circ (1, 2, ..., k-1) = (1, k) \circ (1, k-1) \circ \cdots \circ (1, 2)$



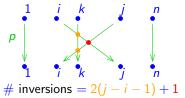
Definition: A fixed point is i : p(i) = i, a trivial cycle of length 1. Definition: A transposition has only one nontrivial cycle of length 2. Observation: Any permutation can be factorized to transpositions. Proof: A cycle (1, ..., k) can be factorized e.g. by: $(1, 2, ..., k) = (1, k) \circ (1, 2, ..., k-1) = (1, k) \circ (1, k-1) \circ \cdots \circ (1, 2)$ Definition: An *inversion* of p is a pair (i, j) : i < j and p(i) > p(j).



Definition: A fixed point is i : p(i) = i, a trivial cycle of length 1. Definition: A *transposition* has only one nontrivial cycle of length 2. Observation: Any permutation can be factorized to transpositions. **Proof:** A cycle $(1, \ldots, k)$ can be factorized e.g. by: $(1, 2, \dots, k) = (1, k) \circ (1, 2, \dots, k-1) = (1, k) \circ (1, k-1) \circ \dots \circ (1, 2)$ Definition: An *inversion* of p is a pair (i, j): i < j and p(i) > p(j). Definition: The sign of a permutation p is $sgn(p) = (-1)^{\#inver. of p}$. Permutations with positive sign are *even*; with negative are *odd*. Observation: Every transposition (i, j) has negative sign.

Definition: A fixed point is i : p(i) = i, a trivial cycle of length 1. Definition: A transposition has only one nontrivial cycle of length 2. Observation: Any permutation can be factorized to transpositions. Proof: A cycle (1, ..., k) can be factorized e.g. by: $(1, 2, ..., k) = (1, k) \circ (1, 2, ..., k-1) = (1, k) \circ (1, k-1) \circ \cdots \circ (1, 2)$ Definition: An *inversion* of p is a pair (i, j) : i < j and p(i) > p(j). Definition: The *sign* of a permutation p is sgn $(p) = (-1)^{\#inver. of p}$. Permutations with positive sign are *even*; with negative are *odd*.

Observation: Every transposition (i, j) has negative sign.



Sign of composed permutation

Theorem: For any $p, q \in S_n$: $sgn(q \circ p) = sgn(p) sgn(q)$. Proof: #inversions of $(q \circ p) = #$ inver. of p + #inver. of q - $|-2|\{(i,j): i < j \land p(i) > p(j) \land q(p(i)) < q(p(j))\}|$ $\begin{array}{c} \boldsymbol{p} \\ \boldsymbol{q} \circ \boldsymbol{p} \\ \boldsymbol{\neg} \end{array} \quad \begin{array}{c} \boldsymbol{\psi} \\ \boldsymbol{\varphi} \\ \boldsymbol{\varphi} \end{array}$ p(j)p(i) an inversion of $q \circ p$ corresponds inversions of p and qto an inversion of p or of qcancel each other Consequences: $\operatorname{sgn}(p^{-1}) = \operatorname{sgn}(p)$... because $\operatorname{sgn}(p)\operatorname{sgn}(p^{-1}) = \operatorname{sgn}(p^{-1} \circ p) = \operatorname{sgn}(id) = 1$ $sgn(p) = (-1)^{\#transpositions}$ of any factorization of p into transpositions $sgn(p) = (-1)^{\#even \text{ cycles of } p}$... even cycles decompose into odd number of transpositions.