
Regular, singular and inverse matrices
Definition: If for A ∈ Rn×n there exists B ∈ Rn×n such that
AB = In, then B is called the inverse matrix and denoted by A−1.
If A has an inverse, then it is called regular, otherwise it is singular.
Theorem: For A ∈ Rn×n the following are equivalent:

1. A is regular, i.e. ∃B ∈ Rn×n : AB = In.
2. rank(A) = n.
3. A ∼∼ In.
4. The system Ax = 0 has only the trivial solution x = 0.

Proof: 2. ⇔ 4. was already proved.
2. ⇒ 3. by Gauss-Jordan elimination, 2. ⇐ 3. In is in REF.
2. ⇒ 1. Denote In = (e1| . . . |en). For i = 1, . . . , n consider systems
Axi = ei . Since rank(A) = n we get B = (x1| . . . |xn).
1. ⇒ 2. If rank(A) < n then for some i , the i-th row of A can be
eliminated by the other rows, thus Axi = ei has no solution as the
only 1 in ei cannot be eliminated by zeroes.



Example
A =

1 3 2
3 4 0
0 1 1

III

II−3I

∼

1 3 2
0 1 1
0 5 6


−5II

∼

1 0 −1
0 1 1
0 0 1

+III

−III∼

1 0 0
0 1 0
0 0 1


The third matrix in REF yields rank(A) = 3, hence A is regular.
The system Ax1 = e1 has a solution1 3 2 1

3 4 0 0
0 1 1 0

 ∼∼

1 0 0 4
0 1 0 −3
0 0 1 3

 x1 =

 4
−3
3


Analogously systems Ax2 = e2 and Ax3 = e3 have solutions
x2 = (−1, 1, −1)T and x3 = (−8, 6, −5)T.
We arrange them into the inverse matrix: A−1 =

 4 −1 −8
−3 1 6
3 −1 −5


A′ =

1 3 2
3 3 0
0 1 1

 II

III

I− 1
3 II−2III

∼

3 3 0
0 1 1
0 0 0

 rank(A′) = 2 ⇒
A′ is singular.

The system A′x1 = e1
has no solution ⇒
(A′)−1 does not exist.

1 3 2 1
3 3 0 0
0 1 1 0

 II

III

I− 1
3 II−2III

∼

3 3 0 0
0 1 1 0
0 0 0 1





Properties of inverse matrix

Corollary: If the inverse matrix A−1 exists, it is unique.

Theorem: The inverse matrix satisfies: A−1A = I.

Proof: We first show that A−1 is regular:
If A−1x = 0 has a solution then x = Ix = AA−1x = A0 = 0.
Hence there exists (A−1)−1 and we get:
A−1A = A−1AI = (A−1A)(A−1(A−1)−1) =
A−1(AA−1)(A−1)−1 = A−1I(A−1)−1 = A−1(A−1)−1 = I

Corollary: If BA = I then A−1 = B.

Proof: BA = I =⇒ AB = I =⇒ A−1 = B



Inverse matrix calculation
▶ Assemble (A|I) and by Gauss–Jordan elimination get (I|B).
▶ If this process fails, then A is singular.
▶ Denote E1, . . . , Ek the elementary matrices of the applied

elementary transforms. Then the left side of (A|I) ∼∼ (I|B)
yields Ek · · · E1A = I, the right side yields Ek · · · E1I = B
thus BA = I and therefore A−1 = B.

▶ The columns of B are in fact solutions of systems Axi = ei .
Example:

(A|I) =

1 3 2 1 0 0
3 4 0 0 1 0
0 1 1 0 0 1

 III

3I−II

∼

1 3 2 1 0 0
0 1 1 0 0 1
0 5 6 3 −1 0


−5II

∼

1 0 −1 1 0 −3
0 1 1 0 0 1
0 0 1 3 −1 −5

+III

−III∼

1 0 0 4 −1 −8
0 1 0 −3 1 6
0 0 1 3 −1 −5

 = (I|A−1)

Verification:

1 3 2
3 4 0
0 1 1

 4 −1 −8
−3 1 6
3 −1 −5

 =

1 0 0
0 1 0
0 0 1





Properties of regular matrices
Observation: If R is regular, then:
A = B ⇐⇒ AR = BR ⇐⇒ RA = RB ⇍⇒ AR = RB

Proof: ⇒ trivially, ⇐: A = AI = ARR−1 = BRR−1 = BI = B.
The other equivalence in the same way.

Proposition: Regular matrices A, B of the same order satisfy:
▶ (A−1)−1 = A
▶ AB is regular

▶ (AB)−1 = B−1A−1

▶ (AT)−1 = (A−1)T

Proof: (A−1)−1 = (A−1)−1I = (A−1)−1A−1A = IA = A.
Prove the remaining claims on your own by analogous arguments.

Corollary: For regular A, B it holds: A = B ⇐⇒ A−1 = B−1.
(In other words, inverting regular matrices is an equivalent
transformation on equations.)



Matrix equations
Observation: For matrices of identical or compatible types:

A + X = B ⇔ X = B − A = B + (−1)A
for t ̸= 0: tX = B ⇔ X = 1

t B
for regular A: AX = B ⇔ X = A−1B
for regular A: XA = B ⇔ X = BA−1

Beware, products A−1B and BA−1 could be distinct.
Example:

Equations
(

9 2
4 1

)
X =

(
3 −1
6 −2

)
and Y

(
9 2
4 1

)
=
(

3 −1
6 −2

)

have different solutions X =
(

−9 3
42 −14

)
and Y =

(
7 −15
14 −30

)

Test:

−9 3
42 −14

9 2
4 1

3 −1
6 −2

9 2
4 1

7 −15
14 −30

3 −1
6 −2



Questions to understand the lecture topic

▶ Which matrix operations preserve the properties
”being regular”and ”being singular”?


