

Regular, singular and inverse matrices

Definition: If for $\mathbf{A} \in \mathbb{R}^{n \times n}$ there exists $\mathbf{B} \in \mathbb{R}^{n \times n}$ such that $\mathbf{AB} = \mathbf{I}_n$, then \mathbf{B} is called the *inverse matrix* and denoted by \mathbf{A}^{-1} . If \mathbf{A} has an inverse, then it is called *regular*, otherwise it is *singular*.

Theorem: For $\mathbf{A} \in \mathbb{R}^{n \times n}$ the following are equivalent:

1. \mathbf{A} is regular, i.e. $\exists \mathbf{B} \in \mathbb{R}^{n \times n} : \mathbf{AB} = \mathbf{I}_n$.
2. $\text{rank}(\mathbf{A}) = n$.
3. $\mathbf{A} \sim\sim \mathbf{I}_n$.
4. The system $\mathbf{Ax} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.

Proof: 2. \Leftrightarrow 4. was already proved.

2. \Rightarrow 3. by Gauss-Jordan elimination, 2. \Leftarrow 3. \mathbf{I}_n is in REF.

2. \Rightarrow 1. Denote $\mathbf{I}_n = (\mathbf{e}_1 | \dots | \mathbf{e}_n)$. For $i = 1, \dots, n$ consider systems $\mathbf{Ax}_i = \mathbf{e}_i$. Since $\text{rank}(\mathbf{A}) = n$ we get $\mathbf{B} = (\mathbf{x}_1 | \dots | \mathbf{x}_n)$.

1. \Rightarrow 2. If $\text{rank}(\mathbf{A}) < n$ then for some i , the i -th row of \mathbf{A} can be eliminated by the other rows, thus $\mathbf{Ax}_i = \mathbf{e}_i$ has no solution as the only 1 in \mathbf{e}_i cannot be eliminated by zeroes.

Example

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 4 & 0 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{\text{III} \sim} \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 5 & 6 \end{pmatrix} \xrightarrow{-5\text{II}} \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{I} + \text{III}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{-\text{III}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The third matrix in REF yields $\text{rank}(\mathbf{A}) = 3$, hence \mathbf{A} is regular.

The system $\mathbf{A}\mathbf{x}_1 = \mathbf{e}_1$ has a solution

$$\begin{pmatrix} 1 & 3 & 2 & | & 1 \\ 3 & 4 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & | & 3 \end{pmatrix} \quad \mathbf{x}_1 = \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix}$$

Analogously systems $\mathbf{A}\mathbf{x}_2 = \mathbf{e}_2$ and $\mathbf{A}\mathbf{x}_3 = \mathbf{e}_3$ have solutions

$$\mathbf{x}_2 = (-1, 1, -1)^T \text{ and } \mathbf{x}_3 = (-8, 6, -5)^T.$$

We arrange them into the inverse matrix: $\mathbf{A}^{-1} = \begin{pmatrix} 4 & -1 & -8 \\ -3 & 1 & 6 \\ 3 & -1 & -5 \end{pmatrix}$

$$\mathbf{A}' = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 3 & 0 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{\text{II} - \text{III}} \begin{pmatrix} 3 & 3 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{rank}(\mathbf{A}') = 2 \Rightarrow \mathbf{A}' \text{ is singular.}$$

The system $\mathbf{A}'\mathbf{x}_1 = \mathbf{e}_1$

has no solution \Rightarrow

$(\mathbf{A}')^{-1}$ does not exist.

$$\begin{pmatrix} 1 & 3 & 2 & | & 1 \\ 3 & 3 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{pmatrix} \xrightarrow{\text{II} - \frac{1}{3}\text{III}} \begin{pmatrix} 3 & 3 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{pmatrix}$$

Properties of inverse matrix

Corollary: If the inverse matrix \mathbf{A}^{-1} exists, it is unique.

Theorem: The inverse matrix satisfies: $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$.

Proof: We first show that \mathbf{A}^{-1} is regular:

If $\mathbf{A}^{-1}\mathbf{x} = \mathbf{0}$ has a solution then $\mathbf{x} = \mathbf{I}\mathbf{x} = \mathbf{A}\mathbf{A}^{-1}\mathbf{x} = \mathbf{A}\mathbf{0} = \mathbf{0}$.

Hence there exists $(\mathbf{A}^{-1})^{-1}$ and we get:

$$\begin{aligned}\mathbf{A}^{-1}\mathbf{A} &= \mathbf{A}^{-1}\mathbf{A}\mathbf{I} = (\mathbf{A}^{-1}\mathbf{A})(\mathbf{A}^{-1}(\mathbf{A}^{-1})^{-1}) = \\ \mathbf{A}^{-1}(\mathbf{A}\mathbf{A}^{-1}) &(\mathbf{A}^{-1})^{-1} = \mathbf{A}^{-1}\mathbf{I}(\mathbf{A}^{-1})^{-1} = \mathbf{A}^{-1}(\mathbf{A}^{-1})^{-1} = \mathbf{I}\end{aligned}$$

Corollary: If $\mathbf{B}\mathbf{A} = \mathbf{I}$ then $\mathbf{A}^{-1} = \mathbf{B}$.

Proof: $\mathbf{B}\mathbf{A} = \mathbf{I} \implies \mathbf{A}\mathbf{B} = \mathbf{I} \implies \mathbf{A}^{-1} = \mathbf{B}$

Inverse matrix calculation

- ▶ Assemble $(A|I)$ and by Gauss–Jordan elimination get $(I|B)$.
- ▶ If this process fails, then A is singular.
- ▶ Denote E_1, \dots, E_k the elementary matrices of the applied elementary transforms. Then the left side of $(A|I) \sim \sim (I|B)$ yields $E_k \cdots E_1 A = I$, the right side yields $E_k \cdots E_1 I = B$ thus $BA = I$ and therefore $A^{-1} = B$.
- ▶ The columns of B are in fact solutions of systems $Ax_i = e_i$.

Example:

$$(A|I) = \left(\begin{array}{ccc|ccc} 1 & 3 & 2 & 1 & 0 & 0 \\ 3 & 4 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right) \xrightarrow{3I-II} \left(\begin{array}{ccc|ccc} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 5 & 6 & 3 & -1 & 0 \end{array} \right) \xrightarrow{-5II} \left(\begin{array}{ccc|ccc} 1 & 0 & -1 & 1 & 0 & -3 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3 & -1 & -5 \end{array} \right) \xrightarrow{+III} \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 4 & -1 & -8 \\ 0 & 1 & 0 & -3 & 1 & 6 \\ 0 & 0 & 1 & 3 & -1 & -5 \end{array} \right) = (I|A^{-1})$$

Verification: $\begin{pmatrix} 1 & 3 & 2 \\ 3 & 4 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 & -1 & -8 \\ -3 & 1 & 6 \\ 3 & -1 & -5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Properties of regular matrices

Observation: If R is regular, then:

$$A = B \iff AR = BR \iff RA = RB \iff AR = RB$$

Proof: \Rightarrow trivially, $\Leftarrow: A = AI = ARR^{-1} = BRR^{-1} = BI = B$.

The other equivalence in the same way.

Proposition: Regular matrices A, B of the same order satisfy:

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- AB is regular
- $(A^T)^{-1} = (A^{-1})^T$

Proof: $(A^{-1})^{-1} = (A^{-1})^{-1}I = (A^{-1})^{-1}A^{-1}A = IA = A$.

Prove the remaining claims on your own by analogous arguments.

Corollary: For regular A, B it holds: $A = B \iff A^{-1} = B^{-1}$.

(In other words, inverting regular matrices is an equivalent transformation on equations.)

Matrix equations

Observation: For matrices of identical or compatible types:

$$\mathbf{A} + \mathbf{X} = \mathbf{B} \Leftrightarrow \mathbf{X} = \mathbf{B} - \mathbf{A} = \mathbf{B} + (-1)\mathbf{A}$$

$$\text{for } t \neq 0: \quad t\mathbf{X} = \mathbf{B} \Leftrightarrow \mathbf{X} = \frac{1}{t}\mathbf{B}$$

$$\text{for regular } \mathbf{A}: \quad \mathbf{A}\mathbf{X} = \mathbf{B} \Leftrightarrow \mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$$

$$\text{for regular } \mathbf{A}: \quad \mathbf{X}\mathbf{A} = \mathbf{B} \Leftrightarrow \mathbf{X} = \mathbf{B}\mathbf{A}^{-1}$$

Beware, products $\mathbf{A}^{-1}\mathbf{B}$ and $\mathbf{B}\mathbf{A}^{-1}$ could be distinct.

Example:

Equations $\begin{pmatrix} 9 & 2 \\ 4 & 1 \end{pmatrix} \mathbf{X} = \begin{pmatrix} 3 & -1 \\ 6 & -2 \end{pmatrix}$ and $\mathbf{Y} \begin{pmatrix} 9 & 2 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 6 & -2 \end{pmatrix}$

have different solutions $\mathbf{X} = \begin{pmatrix} -9 & 3 \\ 42 & -14 \end{pmatrix}$ and $\mathbf{Y} = \begin{pmatrix} 7 & -15 \\ 14 & -30 \end{pmatrix}$

Test:

		-9	3			9	2
		42	-14			4	1
9	2	3	-1			7	-15
4	1	6	-2			14	-30

Questions to understand the lecture topic

- ▶ Which matrix operations preserve the properties "being regular" and "being singular"?