

Operations with matrices

Definition: For any $m, n \in \mathbb{N}$ we define the *zero matrix*

$\mathbf{0}_{m,n} \in \mathbb{R}^{m \times n}$ satisfying $\forall i, j : (\mathbf{0}_{m,n})_{ij} = 0$. Denoted also as $\mathbf{0}$.

For $n \in \mathbb{N}$ the *identity matrix* $\mathbf{I}_n \in \mathbb{R}^{n \times n}$ is defined as

$(\mathbf{I}_n)_{ij} = 1$ when $i = j$ and $(\mathbf{I}_n)_{ij} = 0$ otherwise. Denoted also as \mathbf{I} .

The *main diagonal* of a square matrix \mathbf{A} means the elements a_{ii} .

Example:

$$\mathbf{0}_{2,3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{I}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Definition: The *transpose* of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$

is the matrix $\mathbf{A}^T \in \mathbb{R}^{n \times m}$ defined as $(\mathbf{A}^T)_{ij} = a_{ji}$.

A square matrix \mathbf{A} is *symmetric* if $\mathbf{A}^T = \mathbf{A}$, i.e. $(\mathbf{A}^T)_{ij} = a_{ji} = a_{ij}$.

Example:

The transpose matrix to $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ is $\mathbf{A}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$.

The matrix $\mathbf{A} = \begin{pmatrix} -3 & 7 \\ 7 & 0 \end{pmatrix}$ is symmetric since it satisfies $\mathbf{A} = \mathbf{A}^T$.

Operations with matrices

Definition:

The *sum* of matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ is $(\mathbf{A} + \mathbf{B}) \in \mathbb{R}^{m \times n}$ defined as

$$(\mathbf{A} + \mathbf{B})_{ij} = a_{ij} + b_{ij}.$$

Example:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 7 & 0 & -2 \\ 1 & -5 & 1 \end{pmatrix} = \begin{pmatrix} 1+7 & 2+0 & 3-2 \\ 4+1 & 5-5 & 6+1 \end{pmatrix} = \begin{pmatrix} 8 & 2 & 1 \\ 5 & 0 & 7 \end{pmatrix}$$

Definition:

The *t-multiple* of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, $t \in \mathbb{R}$ is $(t\mathbf{A}) \in \mathbb{R}^{m \times n}$ s.t.

$$(t\mathbf{A})_{ij} = ta_{ij}.$$

Example:

$$3 \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 & 3 \cdot 2 & 3 \cdot 3 \\ 3 \cdot 4 & 3 \cdot 5 & 3 \cdot 6 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{pmatrix}$$

Matrix product

Definition:

For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$ the *product* $(AB) \in \mathbb{R}^{m \times p}$ is defined as

$$(\mathbf{AB})_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.$$

Example:

For $\mathbf{A} = \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & 0 & 1 & 3 \\ 3 & 1 & 2 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 0 & 3 \\ 2 & 0 \\ 0 & 1 \end{pmatrix}$ we get $\mathbf{AB} = \begin{pmatrix} 9 & 8 \\ 2 & 3 \\ 7 & 9 \end{pmatrix}$.

Mnemotechnically:

A	B	AB			
1	2	4	0	9	8
0	0	1	3	2	3
3	1	2	0	7	9

$$3 \cdot 1 + 1 \cdot 0 + 2 \cdot 2 + 0 \cdot 0 = 7$$

Matrix product

Definition:

For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$ the *product* $(\mathbf{AB}) \in \mathbb{R}^{m \times p}$ is defined as

$$(\mathbf{AB})_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.$$

Observation: The matrix product \mathbf{AB} for $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$ requires mnp multiplications and $m(n-1)p$ additions, in total $mnp + m(n-1)p = 2mnp - mp \approx mnp$ arithmetic operations.

We read \approx as "asymptotically" or "approximately" and it means only the largest term(s) without any multiplicative constant(s).

Warning: For matrices, *multiple* and *product* mean different things!

The matrix product is used in the notation $\mathbf{Ax} = \mathbf{b}$, where the vector \mathbf{x} is considered as a matrix with a single column.

Prove or solve on your own

Proposition: If the results of operations are defined then:

$$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C}) \quad \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

$$\mathbf{A} + \mathbf{0} = \mathbf{A} \quad \exists! \mathbf{B} : \mathbf{A} + \mathbf{B} = \mathbf{A}$$

$$s(t\mathbf{A}) = (st)\mathbf{A} \quad (s+t)\mathbf{A} = s\mathbf{A} + t\mathbf{A}$$

$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T \quad (t\mathbf{A})^T = t\mathbf{A}^T$$

$$(\mathbf{A}^T)^T = \mathbf{A} \quad \text{Pf: } ((\mathbf{A}^T)^T)_{ij} = (\mathbf{A}^T)_{ji} = a_{ij}$$

Find square matrices \mathbf{A}, \mathbf{B} such that $\mathbf{AB} \neq \mathbf{BA}$.

Show that the matrix \mathbf{AA}^T is symmetric for any \mathbf{A} .

Show that for any $\mathbf{A} \in \mathbb{R}^{m \times n}$ it holds that $\mathbf{I}_m \mathbf{A} = \mathbf{A} \mathbf{I}_n = \mathbf{A}$.

Derive the following rules for the products of block matrices.

$$\begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{pmatrix} \begin{pmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{pmatrix} = \mathbf{A}_1 \mathbf{B}_1 + \mathbf{A}_2 \mathbf{B}_2 \quad \text{Hint: split the sum.}$$

$$\begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{pmatrix} \begin{pmatrix} \mathbf{B}_1 & \mathbf{B}_2 \\ \mathbf{B}_3 & \mathbf{B}_4 \end{pmatrix} = \begin{pmatrix} \mathbf{A}_1 \mathbf{B}_1 + \mathbf{A}_2 \mathbf{B}_3 & \mathbf{A}_1 \mathbf{B}_2 + \mathbf{A}_2 \mathbf{B}_4 \\ \mathbf{A}_3 \mathbf{B}_1 + \mathbf{A}_4 \mathbf{B}_3 & \mathbf{A}_3 \mathbf{B}_2 + \mathbf{A}_4 \mathbf{B}_4 \end{pmatrix}$$

Proposition: If the results of the operations are defined then:

$$1. (\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$$

$$3. (\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$$

$$2. (\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$

$$4. \mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{AB} + \mathbf{AC}$$

Proof:

1. \mathbf{A} is of order $m \times n \implies \mathbf{B}$ is of order $n \times p$

$$\begin{aligned} ((\mathbf{AB})^T)_{ij} &= (\mathbf{AB})_{ji} = \sum_{k=1}^n a_{jk} b_{ki} = \\ &= \sum_{k=1}^n b_{ki} a_{jk} = \sum_{k=1}^n (\mathbf{B}^T)_{ik} (\mathbf{A}^T)_{kj} = (\mathbf{B}^T \mathbf{A}^T)_{ij} \end{aligned}$$

2. \mathbf{A} of order $m \times n \implies \mathbf{B}$ of order $n \times p \implies \mathbf{C}$ of order $p \times q$

$$\begin{aligned} ((\mathbf{AB})\mathbf{C})_{ij} &= \sum_{k=1}^p (\mathbf{AB})_{ik} c_{kj} = \sum_{k=1}^p \left(\sum_{l=1}^n a_{il} b_{lk} \right) c_{kj} = \\ &= \sum_{k=1}^p \sum_{l=1}^n a_{il} b_{lk} c_{kj} = \sum_{l=1}^n \sum_{k=1}^p a_{il} b_{lk} c_{kj} = \\ &= \sum_{l=1}^n a_{il} \left(\sum_{k=1}^p b_{lk} c_{kj} \right) = \sum_{l=1}^n a_{il} (\mathbf{BC})_{lj} = (\mathbf{A}(\mathbf{BC}))_{ij} \end{aligned}$$

Proposition: If the results of the operations are defined then:

$$1. (\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$$

$$3. (\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$$

$$2. (\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$

$$4. \mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{AB} + \mathbf{AC}$$

$$3. \mathbf{A} \in \mathbb{R}^{m \times n} \implies \mathbf{B} \in \mathbb{R}^{m \times n}, \mathbf{C} \in \mathbb{R}^{n \times p}$$

$$\begin{aligned} ((\mathbf{A} + \mathbf{B})\mathbf{C})_{ij} &= \sum_{k=1}^n (\mathbf{A} + \mathbf{B})_{ik} c_{kj} = \sum_{k=1}^n (a_{ik} + b_{ik}) c_{kj} = \\ &= \sum_{k=1}^n (a_{ik} c_{kj} + b_{ik} c_{kj}) = \sum_{k=1}^n a_{ik} c_{kj} + \sum_{k=1}^n b_{ik} c_{kj} = \\ &= (\mathbf{AC})_{ij} + (\mathbf{BC})_{ij} = (\mathbf{AC} + \mathbf{BC})_{ij} \end{aligned}$$

$$4. \mathbf{A} \in \mathbb{R}^{m \times n} \implies \mathbf{B}, \mathbf{C} \in \mathbb{R}^{n \times p}$$

$$\begin{aligned} (\mathbf{A}(\mathbf{B} + \mathbf{C}))_{ij} &= \sum_{k=1}^n a_{ik} (\mathbf{B} + \mathbf{C})_{kj} = \sum_{k=1}^n a_{ik} (b_{kj} + c_{kj}) = \\ &= \sum_{k=1}^n (a_{ik} b_{kj} + a_{ik} c_{kj}) = \sum_{k=1}^n a_{ik} b_{kj} + \sum_{k=1}^n a_{ik} c_{kj} = \\ &= (\mathbf{AB})_{ij} + (\mathbf{AC})_{ij} = (\mathbf{AB} + \mathbf{AC})_{ij} \end{aligned}$$

Example for the proof of the product associativity

$$\begin{aligned}
 ((\mathbf{AB})\mathbf{C})_{ij} &= \sum_{k=1}^p (\mathbf{AB})_{ik} c_{kj} = \sum_{k=1}^p \left(\sum_{l=1}^n a_{il} b_{lk} \right) c_{kj} = \\
 &= \sum_{k=1}^p \sum_{l=1}^n a_{il} b_{lk} c_{kj} = \sum_{l=1}^n \sum_{k=1}^p a_{il} b_{lk} c_{kj} = \\
 &= \sum_{l=1}^n a_{il} \left(\sum_{k=1}^p b_{lk} c_{kj} \right) = \sum_{l=1}^n a_{il} (\mathbf{BC})_{lj} = (\mathbf{A}(\mathbf{BC}))_{ij}
 \end{aligned}$$

$$m = q = i = j = 1, \ n = p = 2 :$$

	0	1	6
	2	3	7
4	5	10	19
			193

	6
	7
0	1
2	3
4	5
	7
	33
	193

$$\begin{aligned}
 193 &= 10 \cdot 6 + 19 \cdot 7 = (4 \cdot 0 + 5 \cdot 2) \cdot 6 + (4 \cdot 1 + 5 \cdot 3) \cdot 7 = \\
 (4 \cdot 0 \cdot 6 + 5 \cdot 2 \cdot 6) &+ (4 \cdot 1 \cdot 7 + 5 \cdot 3 \cdot 7) = (4 \cdot 0 \cdot 6 + 4 \cdot 1 \cdot 7) + (5 \cdot 2 \cdot 6 + 5 \cdot 3 \cdot 7) = \\
 4 \cdot (0 \cdot 6 + 1 \cdot 7) &+ 5 \cdot (2 \cdot 6 + 3 \cdot 7) = 4 \cdot 7 + 5 \cdot 33 = 193
 \end{aligned}$$

Efficiency of the product evaluation

$$\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}, \mathbf{C} \in \mathbb{R}^{p \times q} : (\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$

	B	C
A	AB	$(AB)C$

$\mathbf{AB} \approx mnp$ arithmetic operations,
 $(\mathbf{AB})\mathbf{C} \approx mpq$ operations,
 in total $\approx mp(n + q)$ operations.

	C
B	BC
A	$A(BC)$

$BC \approx npq$ operations,
 $A(BC) \approx mnq$ operations,
 in total $\approx nq(m+p)$ operations.

When $m \ll n, p, q$, we get $mp(n+q) \ll nq(m+p)$.

				4
		2	-3	3
		-1	2	-1
1	2	0	1	1
-2	-4	0	-2	-2

$$nq(m + p) = \begin{array}{|c|c|c|c|} \hline & 4 & 1 & -1 \\ \hline 2 & -3 & 3 & 2 \\ -1 & 2 & -1 & -1 \\ \hline \end{array} + \begin{array}{|c|c|c|c|} \hline & 0 & 0 & 0 \\ \hline 1 & 2 & 0 & 0 \\ -2 & -4 & 0 & 0 \\ \hline \end{array}$$

The first way has *more* intermediate values than the second.

Though the final result is the same in both ways, a suitable order of evaluation may affect the overall computational complexity.

Elementary matrices

Observation: Let \mathbf{B} be the matrix obtained from \mathbf{A} by:

- ▶ the multiplication of the i -th row by $t \neq 0$. Then $\mathbf{B} = \mathbf{EA}$ where $e_{ii} = t$, $e_{kk} = 1$ for $k \neq i$ and $e_{kl} = 0$ for $k \neq l$.
- ▶ the adding the j -th row to the i -th. Then $\mathbf{B} = \mathbf{EA}$ where $e_{ij} = 1$, $e_{kk} = 1$, for all k , and $e_{kl} = 0$ for $i \neq k \neq l \neq j$.

Such matrices \mathbf{E} are called *elementary* matrices.

Example:

$\begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}$	$\begin{matrix} 3 & 6 & \dots & a_{1k} \\ 7 & 1 & \dots & a_{2k} \\ 2 & 4 & \dots & a_{3k} \\ 5 & 3 & \dots & a_{4k} \end{matrix}$	$i = 2$
		$j = 4$
		$t = 4$

$\begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}$	$\begin{matrix} 3 & 6 & \dots & a_{1k} \\ 12 & 4 & \dots & a_{2k} + a_{4k} \\ 2 & 4 & \dots & a_{3k} \\ 5 & 3 & \dots & a_{4k} \end{matrix}$	

Questions to understand the lecture topic

- ▶ Which of the matrix identities would become invalid if *product* of individual numbers was not commutative?
- ▶ Which would become invalid if *sum* was not commutative?
- ▶ What are the assumptions for block sizes in the rules for block matrix multiplication?
- ▶ What do the elementary matrices for the remaining elementary operations look like: adding t times the i th row to the j th row and swapping two rows?
- ▶ What does the product with the elementary matrix *from the right*, ie. \mathbf{AE} , yield?