
Solution verification for Ax = b
Substitute x including parameters into the original system Ax = b,
ie., verify x0 for Ax = b and also x1, . . . , xn−r for Ax = 0.
This test does not verify the completeness of the solution set,
because it may happen that we add a new condition due to an error
in Gaussian elimination. Then we get only a subset of all solutions.
For simplicity, we only consider homogeneous systems Ax = 0,
i.e. only the matrix A. For nonhomogeneous systems, it will be
necessary to take the augmented matrix (A|b) instead.
The correctness of Gaussian elimination can be verified, eg. by its
reversal, i.e. by transforming the matrix A′ in the echelon form to
the original matrix A by elementary transforms.
This can be done by first adding the identity matrix to the matrix
A and eliminating both together (A|I) ∼∼ (A′|C).
Then we move the "control" block C in front of A′ and by
Gauss-Jordan elimination we reverse the process (C |A′) ∼∼ (I|A).



Example
Gaussian elimination with the identity matrix added:

(A|I4) =

1 4 3 2 1 1 0 0 0
2 8 4 0 0 0 1 0 0
0 0 3 6 9 0 0 1 0
2 8 7 6 3 0 0 0 1

 −2I

−2I

∼∼

1 4 3 2 1 1 0 0 0
0 0 −2 −4 −2 −2 1 0 0
0 0 3 6 9 0 0 1 0
0 0 1 2 1 −2 0 0 1

 IV

−3IV

II+2IV

∼∼

1 4 3 2 1 1 0 0 0
0 0 1 2 1 −2 0 0 1
0 0 0 0 6 6 0 1 −3
0 0 0 0 0 −6 1 0 2

 = (A′|C)

Transformation in the opposite direction: (C |A′) =

=

 1 0 0 0 1 4 3 2 1
−2 0 0 1 0 0 1 2 1
6 0 1 −3 0 0 0 0 6

−6 1 0 2 0 0 0 0 0

 +2I

−6I

+6I

∼∼

1 0 0 0 1 4 3 2 1
0 0 0 1 2 8 7 6 3
0 0 1 −3 −6 −24 −18 −12 0
0 1 0 2 6 24 18 12 6

 IV−2II

+3II

II

∼∼

1 0 0 0 1 4 3 2 1
0 1 0 0 2 8 4 0 0
0 0 1 0 0 0 3 6 9
0 0 0 1 2 8 7 6 3

 = (I4|A)



Solution verification for Ax = b

Another way to test the completeness of the solution is to verify
that the rank of A was not calculated higher than it actually is.
The columns of the matrix A corresponding to the leading
variables should be linearly independent. From these columns, we
compose the matrix B and independently determine its rank.
If the rank matches the number of columns in B, then these
columns are linearly independent.
To avoid the same sequence of elementary transformations as in
the Gaussian elimination of A, we can either shuffle these columns,
or we can compute the rank of BT instead.
Since BT has at least as many columns as rows, Gaussian
elimination of BT can be faster than the elimination of B.



Example

A =


1 4 3 2 1
2 8 4 0 0
0 0 3 6 9
2 8 7 6 3

 ∼∼

1 4 3 2 1
0 0 1 2 1
0 0 0 0 6
0 0 0 0 0

 = A′

From the columns of A corresponding to the
leading variables, we compose the matrix B
and independently determine its rank,
e.g. by using rank(B) = rank(BT ).

B =


1 3 1
2 4 0
0 3 9
2 7 3



BT =
(1 2 0 2

3 4 3 7
1 0 9 3

)
−3I

−I

∼∼
(1 2 0 2

0 −2 3 1
0 −2 9 1

)
−II

∼
(1 2 0 2

0 −2 3 1
0 0 6 0

)

As rank(BT ) = rank(A), the rank of A was determined correctly.



Solution verification for Ax = b

A combination of both ways is the property test from the second:
"the rank of A was not calculated higher than it actually is"
with help of the control matrix C from the first and the product.

Just verify that A′ = CA,
because then it holds that:
rank(A′) = rank(CA) ≤ rank(A).

Example: 1 4 3 2 1
2 8 4 0 0
0 0 3 6 9
2 8 7 6 3

1 0 0 0
−2 0 0 1
6 0 1 −3

−6 1 0 2

1 4 3 2 1
0 0 1 2 1
0 0 0 0 6
0 0 0 0 0

Out of the three ways, this is perhaps the computationally simplest,
because instead of the second elimination, only a product suffices.
Still, we shall not forget to test the solution of the system.



Why are these methods correct?

Later we will show that:
I Elementary transforms are products with suitable matrices.
I The elimination of C on I corresponds to the product with

the matrix C−1 from the left.
I The product with C−1 performs the reverse process

compared to the product with C .

I The rank of a matrix is the number of its linearly independent
columns. (We will also define linear independence.)

I rank(B) = rank(BT )

I The rank cannot increase in the matrix product, i.e.
rank(CA) ≤ rank(A).


