Solution verification for $\boldsymbol{A x}=\boldsymbol{b}$

Substitute \mathbf{x} including parameters into the original system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, ie., verify \boldsymbol{x}^{0} for $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and also $\overline{\boldsymbol{x}}^{1}, \ldots, \overline{\boldsymbol{x}}^{n-r}$ for $\boldsymbol{A} \overline{\boldsymbol{x}}=\mathbf{0}$.
This test does not verify the completeness of the solution set, because it may happen that we add a new condition due to an error in Gaussian elimination. Then we get only a subset of all solutions.
For simplicity, we only consider homogeneous systems $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$, i.e. only the matrix \boldsymbol{A}. For nonhomogeneous systems, it will be necessary to take the augmented matrix ($\boldsymbol{A} \mid \boldsymbol{b}$) instead.
The correctness of Gaussian elimination can be verified, eg. by its reversal, i.e. by transforming the matrix \boldsymbol{A}^{\prime} in the echelon form to the original matrix \boldsymbol{A} by elementary transforms.
This can be done by first adding the identity matrix to the matrix \boldsymbol{A} and eliminating both together $(\boldsymbol{A} \mid \boldsymbol{I}) \sim \sim\left(\boldsymbol{A}^{\prime} \mid \boldsymbol{C}\right)$.
Then we move the "control" block \boldsymbol{C} in front of \boldsymbol{A}^{\prime} and by
Gauss-Jordan elimination we reverse the process $\left(\boldsymbol{C} \mid \boldsymbol{A}^{\prime}\right) \sim \sim(\boldsymbol{I} \mid \boldsymbol{A})$.

Example

Gaussian elimination with the identity matrix added:
$\left(\boldsymbol{A} \mid \boldsymbol{I}_{4}\right)=\left(\begin{array}{lllll|llll}1 & 4 & 3 & 2 & 1 & 1 & 0 & 0 & 0 \\ 2 & 8 & 4 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 6 & 9 & 0 & 0 & 1 & 0 \\ 2 & 8 & 7 & 6 & 3 & 0 & 0 & 0 & 1\end{array}\right) \underset{-2 I}{\sim} \sim\left(\begin{array}{ccccc|cccc}1 & 4 & 3 & 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -2 & -4 & -2 & -2 & 1 & 0 & 0 \\ 0 & 0 & 3 & 6 & 9 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 & -2 & 0 & 0 & 1\end{array}\right)$ IV
$\sim \sim\left(\begin{array}{ccccc|cccc}1 & 4 & 3 & 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & -2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 6 & 6 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 & -6 & 1 & 0 & 2\end{array}\right)=\left(\boldsymbol{A}^{\prime} \mid \boldsymbol{C}\right)$
Transformation in the opposite direction: $\left(\boldsymbol{C} \mid \boldsymbol{A}^{\prime}\right)=$
$=\left(\begin{array}{cccc|ccccc}1 & 0 & 0 & 0 & 1 & 4 & 3 & 2 & 1 \\ -2 & 0 & 0 & 1 & 0 & 0 & 1 & 2 & 1 \\ 6 & 0 & 1 & -3 & 0 & 0 & 0 & 0 & 6 \\ -6 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0\end{array}\right) \underset{-61}{\sim}\left(\begin{array}{cccc|ccccc}1 & 0 & 0 & 0 & 1 & 4 & 3 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 & 8 & 7 & 6 & 3 \\ 0 & 0 & 1 & -3 & -6 & -24 & -18 & -12 & 0 \\ 0 & 1 & 0 & 2 & 6 & 24 & 18 & 12 & 6\end{array}\right)$
$\sim \sim\left(\begin{array}{llll|lllll}1 & 0 & 0 & 0 & 1 & 4 & 3 & 2 & 1 \\ 0 & 1 & 0 & 0 & 2 & 8 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 3 & 6 & 9 \\ 0 & 0 & 0 & 1 & 2 & 8 & 7 & 6 & 3\end{array}\right)=\left(\boldsymbol{I}_{4} \mid \boldsymbol{A}\right)$

Solution verification for $\boldsymbol{A x}=\boldsymbol{b}$

Another way to test the completeness of the solution is to verify that the rank of \boldsymbol{A} was not calculated higher than it actually is.
The columns of the matrix \boldsymbol{A} corresponding to the leading variables should be linearly independent. From these columns, we compose the matrix \boldsymbol{B} and independently determine its rank. If the rank matches the number of columns in \boldsymbol{B}, then these columns are linearly independent.
To avoid the same sequence of elementary transformations as in the Gaussian elimination of \boldsymbol{A}, we can either shuffle these columns, or we can compute the rank of \boldsymbol{B}^{T} instead.
Since \boldsymbol{B}^{T} has at least as many columns as rows, Gaussian elimination of \boldsymbol{B}^{T} can be faster than the elimination of \boldsymbol{B}.

Example

$\boldsymbol{A}=\left(\begin{array}{lllll}1 & 4 & 3 & 2 & 1 \\ 2 & 8 & 4 & 0 & 0 \\ 0 & 0 & 3 & 6 & 9 \\ 2 & 8 & 7 & 6 & 3\end{array}\right) \sim \sim\left(\begin{array}{lllll}1 & 4 & 3 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\boldsymbol{A}^{\prime}$
From the columns of \boldsymbol{A} corresponding to the leading variables, we compose the matrix \boldsymbol{B} and independently determine its rank, e.g. by using $\operatorname{rank}(\boldsymbol{B})=\operatorname{rank}\left(\boldsymbol{B}^{T}\right)$.

$$
\boldsymbol{B}=\left(\begin{array}{lll}
1 & 3 & 1 \\
2 & 4 & 0 \\
0 & 3 & 9 \\
2 & 7 & 3
\end{array}\right)
$$

$\boldsymbol{B}^{T}=\left(\begin{array}{llll}1 & 2 & 0 & 2 \\ 3 & 4 & 3 & 7 \\ 1 & 0 & 9 & 3\end{array}\right) \underset{-I}{\sim}\left(\begin{array}{cccc}1 & 2 & 0 & 2 \\ 0 & -2 & 3 & 1 \\ 0 & -2 & 9 & 1\end{array}\right) \underset{-\mathbb{I}}{\sim}\left(\begin{array}{cccc}1 & 2 & 0 & 2 \\ 0 & -2 & 3 & 1 \\ 0 & 0 & 6 & 0\end{array}\right)$
As $\operatorname{rank}\left(\boldsymbol{B}^{T}\right)=\operatorname{rank}(\boldsymbol{A})$, the rank of \boldsymbol{A} was determined correctly.

Solution verification for $\boldsymbol{A x}=\boldsymbol{b}$

A combination of both ways is the property test from the second: "the rank of \boldsymbol{A} was not calculated higher than it actually is" with help of the control matrix \boldsymbol{C} from the first and the product.

Just verify that $\boldsymbol{A}^{\prime}=\boldsymbol{C A}$, because then it holds that:
$\operatorname{rank}\left(\boldsymbol{A}^{\prime}\right)=\operatorname{rank}(\boldsymbol{C A}) \leq \operatorname{rank}(\boldsymbol{A})$.

Out of the three ways, this is perhaps the computationally simplest, because instead of the second elimination, only a product suffices. Still, we shall not forget to test the solution of the system.

Why are these methods correct?

Later we will show that:

- Elementary transforms are products with suitable matrices.
- The elimination of \boldsymbol{C} on \boldsymbol{I} corresponds to the product with the matrix C^{-1} from the left.
- The product with \boldsymbol{C}^{-1} performs the reverse process compared to the product with \boldsymbol{C}.
- The rank of a matrix is the number of its linearly independent columns. (We will also define linear independence.)
$-\operatorname{rank}(\boldsymbol{B})=\operatorname{rank}\left(\boldsymbol{B}^{T}\right)$
- The rank cannot increase in the matrix product, i.e. $\operatorname{rank}(\boldsymbol{C A}) \leq \operatorname{rank}(\boldsymbol{A})$.

