Homogeneous and non-homogeneous systems

Notation: Vectors of the same length are added by components. We multiply a vector by a real number also by components. Observation: If x and x^0 are two solutions of Ax = b then $\overline{x} = x - x^0$ is a solution of $A\overline{x} = 0$.

Proof: $A\overline{x} = A(x - x^0) \stackrel{*}{=} Ax - Ax^0 = b - b = 0.$ *: $a_{i,1}(x_1 - x_1^0) + \dots + a_{i,n}(x_n - x_n^0) = (a_{i,1}x_1 + \dots + a_{i,n}x_n) - (a_{i,1}x_1^0 + \dots + a_{i,n}x_n^0)$ Example: $2(-1) + 2 = 2(1-2) + (6-4) \stackrel{*}{=} (2 \cdot 1 + 6) - (2 \cdot 2 + 4) = 8 - 8 = 0$ Observation: If x^0 is a solution of Ax = b and \overline{x} is a solution of $A\overline{x} = 0$ then $x = \overline{x} + x^0$ is a solution of Ax = b.

Proof: Analogously: $Ax = A(\overline{x} + x^0) = A\overline{x} + Ax^0 = b + 0 = b$.

Homogeneous and non-homogeneous systems

Theorem: Let x^0 satisfy $Ax^0 = b$. Then the map $\overline{x} \to \overline{x} + x^0$ is a bijection between the sets $\{\overline{x} : A\overline{x} = 0\}$ and $\{x : Ax = b\}$.

Proof: Denote $U = \{\overline{x} : A\overline{x} = 0\}, V = \{x : Ax = b\}, f : U \to V \text{ by } f(\overline{x}) = \overline{x} + x^0, \text{ and } g : V \to U \text{ by } g(x) = x - x^0.$ $g \circ f$ is the identity on $U \Longrightarrow f$ is injective $f \circ g$ is the identity on $V \Longrightarrow f$ is surjective $\begin{cases} \Rightarrow f \ \Rightarrow f$

Solutions of homogeneous systems $A\overline{x} = 0$

Theorem: For $\mathbf{A} \in \mathbb{R}^{m \times n}$ a matrix of rank r all solutions of $\mathbf{A}\overline{\mathbf{x}} = \mathbf{0}$ can be written as $\overline{\mathbf{x}} = p_1 \overline{\mathbf{x}}^1 + p_2 \overline{\mathbf{x}}^2 + \dots + p_{n-r} \overline{\mathbf{x}}^{n-r}$, where

- \triangleright p_1, \ldots, p_{n-r} are arbitrary real parameters and
- $\overline{\mathbf{x}}^1, \dots, \overline{\mathbf{x}}^{n-r}$ are suitable solutions of $A\overline{\mathbf{x}} = \mathbf{0}$.

The system has only the trivial solution $\overline{\mathbf{x}} = \mathbf{0}$ iff rank $(\mathbf{A}) = n$. Example:

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 3 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 6 \end{pmatrix} \qquad \overline{x_1} = -4\overline{x_2} - 3\overline{x_3} - 2\overline{x_4} - \overline{x_5} = -4\overline{x_2} + 4\overline{x_4}$$
$$\overline{x_3} = -2\overline{x_4} - \overline{x_5} = -2\overline{x_4}$$
$$\overline{x_5} = 0$$

When we rename $\overline{x_2}$ and $\overline{x_4}$ by parameters p_1 and p_2 , we get:

$$\overline{x_{1}} = -4\overline{x_{2}} + 4\overline{x_{4}} = -4p_{1} + 4p_{2} \overline{x_{2}} = p_{1} \text{ that is } \overline{x} = \overline{x_{3}} = -2\overline{x_{4}} = -2p_{2}, \quad p_{1}\overline{x}^{1} + p_{2}\overline{x}^{2} = p_{1} \begin{pmatrix} -4 \\ 1 \\ 0 \\ -2 \\ 0 \\ 0 \end{pmatrix} + p_{2} \begin{pmatrix} 4 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} \overline{x_{5}} = 0$$

Solutions of homogeneous systems $A\overline{x} = 0$

Theorem: For $\mathbf{A} \in \mathbb{R}^{m \times n}$ a matrix of rank r all solutions of $\mathbf{A}\overline{\mathbf{x}} = \mathbf{0}$ can be written as $\overline{\mathbf{x}} = p_1 \overline{\mathbf{x}}^1 + p_2 \overline{\mathbf{x}}^2 + \cdots + p_{n-r} \overline{\mathbf{x}}^{n-r}$, where

- ▶ p_1, \ldots, p_{n-r} are arbitrary real parameters and
- $\overline{\mathbf{x}}^1, \dots, \overline{\mathbf{x}}^{n-r}$ are suitable solutions of $A\overline{\mathbf{x}} = \mathbf{0}$.

The system has only the trivial solution $\overline{\mathbf{x}} = \mathbf{0}$ iff rank(\mathbf{A}) = n. Proof: Rename the free variables as p_1, \ldots, p_{n-r} . By the backward substitution we can express each component of the solution as a linear function of the free variables, i.e.

 $\overline{x_1} = \alpha_{1,1}p_1 + \cdots + \alpha_{1,n-r}p_{n-r}$

 \vdots $\overline{x_n} = \alpha_{n,1}p_1 + \dots + \alpha_{n,n-r}p_{n-r}$ Choose $\overline{\mathbf{x}}^1 = (\alpha_{1,1}, \dots, \alpha_{n,1})^T, \dots, \overline{\mathbf{x}}^{n-r} = (\alpha_{1,n-r}, \dots, \alpha_{n,n-r})^T$. These solve $A\overline{\mathbf{x}} = \mathbf{0}$ as any such $\overline{\mathbf{x}}^i$ comes from: $p_j = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$ If rank(A) = n, all variables are leading, and $\mathbf{0}$ is the only solution.

Solutions of homogeneous systems $A\overline{x} = 0$

Theorem: For $\mathbf{A} \in \mathbb{R}^{m \times n}$ a matrix of rank r all solutions of $\mathbf{A}\overline{\mathbf{x}} = \mathbf{0}$ can be written as $\overline{\mathbf{x}} = p_1 \overline{\mathbf{x}}^1 + p_2 \overline{\mathbf{x}}^2 + \cdots + p_{n-r} \overline{\mathbf{x}}^{n-r}$, where

- ▶ p_1, \ldots, p_{n-r} are arbitrary real parameters and
- $\overline{\mathbf{x}}^1, \dots, \overline{\mathbf{x}}^{n-r}$ are suitable solutions of $A\overline{\mathbf{x}} = \mathbf{0}$.

The system has only the trivial solution $\overline{\mathbf{x}} = \mathbf{0}$ iff rank $(\mathbf{A}) = n$.

Corollary for *non-homogeneous* systems:

Let a system Ax = b has a nonempty set of solutions where $A \in \mathbb{R}^{m \times n}$ is a matrix of rank r. Then all solutions of Ax = b can be written as $x = x^0 + p_1 \overline{x}^1 + p_2 \overline{x}^2 + \cdots + p_{n-r} \overline{x}^{n-r}$, where

- \triangleright p_1, \ldots, p_{n-r} are arbitrary real parameters,
- $\overline{\mathbf{x}}^1, \ldots, \overline{\mathbf{x}}^{n-r}$ are suitable solutions of $A\overline{\mathbf{x}} = \mathbf{0}$, and
- **•** x^0 is an arbitrary solution of the system Ax = b.

Solutions of systems Ax = b — summary and example

1. Transform the augmented matrix $(\mathbf{A}|\mathbf{b})$ into the echelon form:

$$(\boldsymbol{A}|\boldsymbol{b}) = \begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 2 & 8 & 4 & 0 & 0 & | & 0 \\ 0 & 0 & 3 & 6 & 9 & | & 5 \\ 2 & 8 & 7 & 6 & 3 & | & 3 \end{pmatrix} \sim \sim \begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 0 & 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 6 & | & 2 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} = (\boldsymbol{A}'|\boldsymbol{b}')$$

2. If a pivot is in the last column, then no solution exists.

3. Otherwise solve first the homogeneous system $\mathbf{A}'\mathbf{\overline{x}} = \mathbf{0}$, i.e.

 $\begin{array}{rcl} \overline{x_5} & = & 0 \\ \overline{x_3} & = & -2\overline{x_4} - \overline{x_5} & = & -2\overline{x_4} \\ \overline{x_1} & = & -4\overline{x_2} - 3\overline{x_3} - 2\overline{x_4} - \overline{x_5} & = & -4\overline{x_2} + 4\overline{x_4} \end{array}$

4. Replace the free variables in $\overline{\mathbf{x}}$ with parameters:

 $\overline{\mathbf{x}} = p_1(-4, 1, 0, 0, 0)^T + p_2(4, 0, -2, 1, 0)^T$

5. Finally, find any solution of the non-homogeneous system $\mathbf{A}'\mathbf{x} = \mathbf{b}'$, e.g. $\mathbf{x}^0 = (4, -1, 0, \frac{1}{3}, \frac{1}{3})^T$ and get: $\mathbf{x} = (4, -1, 0, \frac{1}{3}, \frac{1}{3})^T + p_1(-4, 1, 0, 0, 0)^T + p_2(4, 0, -2, 1, 0)^T$

Verification

Substitute *x* including parameters into the original system Ax = b, i.e., verify x^0 for Ax = b and also $\overline{x}^1, \ldots, \overline{x}^{n-r}$ for $A\overline{x} = 0$.

Example:

For a system
$$\begin{array}{l} x_1 + 4x_2 + 3x_3 + 2x_4 + x_5 = 1 \\ 2x_1 + 8x_2 + 4x_3 &= 0 \\ 3x_3 + 6x_4 + 9x_5 = 5 \\ 2x_1 + 8x_2 + 7x_3 + 6x_4 + 3x_5 = 3 \end{array}$$

substitute

What the tests verify

If we do not insert the solution x including the parameters into the original system Ax = b, we may not detect the following errors:

- Without the parameters we verify only the solution x⁰.
- A specific choice of parameters verifies only one solution, not all. We wouldn't have to reveal faulty solutions.

Example: We check $\mathbf{x} = (1,3)^T + p_1(1,1)^T$ for $2x_1 + x_2 = 8$. For $p_1 = 1$, we have $\mathbf{x} = (2,4)^T$, which satisfies $2 \cdot 2 + 4 = 8$, but neither $\mathbf{x}^0 = (1,3)^T$ nor choices of p_1 are valid solutions.

Substitution into A'x = b' verifies the correctness of the backward substitution, but not of Gaussian elimination.

Warning: We cannot yet verify the completeness of the solution set. It may happen that we add a new condition due to an error in Gaussian elimination. Then we get only a *subset* of all solutions.

E.g. on error in the last column we may not obtain any solution:

 $\begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 0 & 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & -2 & -4 & -2 & | & -2 \\ 0 & 0 & 3 & 6 & 9 & | & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 0 & 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 3 & 6 & 9 & | & 5 \end{pmatrix} \checkmark \mathbf{v}^{\mathsf{vs.}} \begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 0 & 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & -2 & -4 & -2 & | & -2 \\ 0 & 0 & 3 & 6 & 9 & | & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 0 & 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & -4 \\ 0 & 0 & 3 & 6 & 9 & | & 5 \end{pmatrix} \mathbf{X}$

Reduced row echelon form

Definition: A row echelon form of a matrix is *reduced* if each pivot is 1 and all other elements in pivot columns are 0es.

Reduced row echelon form

Definition: A row echelon form of a matrix is *reduced* if each pivot is 1 and all other elements in pivot columns are 0es.

Fact: Every matrix **A** has a unique **A'** in reduced row echelon form such that $\mathbf{A} \sim \mathbf{A'}$. "Pf": distinct r.r.e.f. yields different solutions.

Any matrix in row echelon form can be reduced by:

Divide each row by a_{i,j(i)}, thus get 1s as pivots.

Foreach i = r,...,1, eliminate each a_{i',j(i)} with i' < i by addition -a_{i',j(i)}-multiple of the *i*-th row to *i*'-th row. thus to get 0es above the pivot a_{i,j(i)}

Example:

$$\begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 0 & 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 6 & | & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 0 & 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 1 & | & \frac{1}{3} \end{pmatrix} \xrightarrow{-\Pi} \sim \begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & | & \frac{1}{3} \\ 0 & 0 & 1 & 2 & 0 & | & \frac{2}{3} \\ 0 & 0 & 1 & 2 & 0 & | & \frac{2}{3} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{1}{3} \end{pmatrix} \xrightarrow{-\Pi} \begin{pmatrix} 1 & 4 & 0 & -4 & 0 & | & -\frac{4}{3} \\ 0 & 0 & 1 & 2 & 0 & | & \frac{2}{3} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{1}{3} \end{pmatrix}$$

This process is sometimes called the *Gauss-Jordan elimination*.

Advantages of reduced row echelon form

$$\begin{aligned} \mathbf{x} &= \begin{pmatrix} -\frac{4}{3}, 0, \frac{2}{3}, 0, \frac{1}{3} \end{pmatrix}^{T} + p_{1}(-4, 1, 0, 0, 0)^{T} + p_{2}(4, 0, -2, 1, 0)^{T} \\ & \begin{pmatrix} 1 & 4 & 3 & 2 & 1 & | & 1 \\ 0 & 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 6 & | & 2 \end{pmatrix} \sim \sim \begin{pmatrix} 1 & 4 & 0 & -4 & 0 & | & -\frac{4}{3} \\ 0 & 0 & 1 & 2 & 0 & | & \frac{2}{3} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{1}{3} \end{pmatrix} \\ & \begin{array}{c} \left(1 & 4 & 0 & -4 & 0 & | & -\frac{4}{3} \\ 0 & 0 & 1 & 2 & 0 & | & \frac{2}{3} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{1}{3} \end{pmatrix} \\ & \begin{array}{c} \left(1 & 4 & 0 & -4 & 0 & | & -\frac{4}{3} \\ 0 & 0 & 1 & 2 & 0 & | & \frac{2}{3} \\ 0 & 0 & 0 & 0 & 1 & | & \frac{1}{3} \end{pmatrix} \\ & \begin{array}{c} \text{yields directly the solution} \\ \mathbf{x}^{0} &= \begin{pmatrix} -\frac{4}{3}, 0, \frac{2}{3}, 0, \frac{1}{3} \end{pmatrix}^{T} \\ \text{by choosing } x_{2} &= x_{4} &= 0 \\ \\ & \begin{array}{c} \left(1 & 4 & 0 & -4 & 0 & | & 0 \\ 0 & 0 & 1 & 2 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{pmatrix} \\ & \begin{array}{c} \text{solves directly } \mathbf{Ax} &= \mathbf{0} \\ \text{solves directly } \mathbf{Ax} &= \mathbf{0} \\ \mathbf{x}^{1} &= (-4, 1, 0, 0, 0)^{T}, \\ \text{i.e. for } x_{2} &= 1 \\ \text{and } x_{4} &= 0 \\ \end{array} \\ & \begin{array}{c} \left(1 & 4 & 0 & -4 & 0 & | & 0 \\ 0 & 0 & 1 & 2 & 0 & | & 0 \\ 0 & 0 & 1 & 2 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ \end{array} \right) \\ & \begin{array}{c} \text{solves directly } \mathbf{Ax} &= \mathbf{0} \\ \text{as } \mathbf{x}^{2} &= (4, 0, -2, 1, 0)^{T}, \\ \text{i.e. for } x_{2} &= 0 \\ \text{and } x_{4} &= 1 \\ \end{array} \end{aligned}$$

Ill-conditioned system

