
Homogeneous and non-homogeneous systems
Notation: Vectors of the same length are added by components.
We multiply a vector by a real number also by components.
Observation: If x and x0 are two solutions of Ax = b
then x = x − x0 is a solution of Ax = 0.
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Proof: Ax = A(x − x0) ∗= Ax − Ax0 = b − b = 0.
∗: ai,1(x1−x0

1 )+ · · ·+ai,n(xn−x0
n ) = (ai,1x1 + · · ·+ai,nxn)−(ai,1x0

1 + · · ·+ai,nx0
n )

Example: 2(−1) + 2 = 2(1− 2) + (6− 4) ∗= (2 · 1 + 6)− (2 · 2 + 4) = 8− 8 = 0

Observation: If x0 is a solution of Ax = b and x is a solution of
Ax = 0 then x = x + x0 is a solution of Ax = b.
Proof: Analogously: Ax = A(x + x0) = Ax + Ax0 = b + 0 = b.



Homogeneous and non-homogeneous systems
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Theorem: Let x0 satisfy Ax0 = b. Then the map x → x + x0

is a bijection between the sets {x : Ax = 0} and {x : Ax = b}.

Proof: Denote U = {x : Ax = 0}, V = {x : Ax = b},
f : U → V by f (x) = x + x0, and g : V → U by g(x) = x − x0.
g ◦ f is the identity on U =⇒ f is injective
f ◦ g is the identity on V =⇒ f is surjective

}
=⇒ f is bijective.



Solutions of homogeneous systems Ax = 0
Theorem: For A ∈ Rm×n a matrix of rank r all solutions of Ax = 0
can be written as x = p1x1 + p2x2 + · · ·+ pn−r xn−r , where
I p1, . . . , pn−r are arbitrary real parameters and
I x1, . . . , xn−r are suitable solutions of Ax = 0.

The system has only the trivial solution x = 0 iff rank(A) = n.
Example:

A =

1 4 3 2 1
0 0 1 2 1
0 0 0 0 6

 x1 = −4x2 − 3x3 − 2x4 − x5 = −4x2 + 4x4
x3 = −2x4 − x5 = −2x4
x5 = 0

When we rename x2 and x4 by parameters p1 and p2, we get:
x1 =−4x2+4x4 =−4p1+4p2
x2 = p1
x3 = −2x4 = −2p2
x4 = p2
x5 = 0

,
that is x =
p1x1 + p2x2 =p1


−4
1
0
0
0

+ p2


4
0
−2
1
0

.

Corollary for non-homogeneous systems:
Let a system Ax = b has a nonempty set of solutions where
A ∈ Rm×n is a matrix of rank r . Then all solutions of Ax = b can
be written as x = x0 + p1x1 + p2x2 + · · ·+ pn−r xn−r , where
I p1, . . . , pn−r are arbitrary real parameters,
I x1, . . . , xn−r are suitable solutions of Ax = 0, and
I x0 is an arbitrary solution of the system Ax = b.



Solutions of homogeneous systems Ax = 0
Theorem: For A ∈ Rm×n a matrix of rank r all solutions of Ax = 0
can be written as x = p1x1 + p2x2 + · · ·+ pn−r xn−r , where
I p1, . . . , pn−r are arbitrary real parameters and
I x1, . . . , xn−r are suitable solutions of Ax = 0.

The system has only the trivial solution x = 0 iff rank(A) = n.
Proof: Rename the free variables as p1, . . . , pn−r .
By the backward substitution we can express each component of
the solution as a linear function of the free variables, i.e.

x1 = α1,1p1 + · · ·+ α1,n−r pn−r
...

xn = αn,1p1 + · · ·+ αn,n−r pn−r
Choose x1 = (α1,1, . . . , αn,1)T , . . . , xn−r = (α1,n−r , . . . , αn,n−r )T .

These solve Ax = 0 as any such x i comes from: pj =
{

1 j = i
0 j 6= i

If rank(A) = n, all variables are leading, and 0 is the only solution.

Corollary for non-homogeneous systems:
Let a system Ax = b has a nonempty set of solutions where
A ∈ Rm×n is a matrix of rank r . Then all solutions of Ax = b can
be written as x = x0 + p1x1 + p2x2 + · · ·+ pn−r xn−r , where
I p1, . . . , pn−r are arbitrary real parameters,
I x1, . . . , xn−r are suitable solutions of Ax = 0, and
I x0 is an arbitrary solution of the system Ax = b.
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be written as x = x0 + p1x1 + p2x2 + · · ·+ pn−r xn−r , where
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Solutions of systems Ax = b — summary and example
1. Transform the augmented matrix (A|b) into the echelon form:

(A|b) =


1 4 3 2 1 1
2 8 4 0 0 0
0 0 3 6 9 5
2 8 7 6 3 3

 ∼∼

1 4 3 2 1 1
0 0 1 2 1 1
0 0 0 0 6 2
0 0 0 0 0 0

 = (A′|b′)

2. If a pivot is in the last column, then no solution exists.
3. Otherwise solve first the homogeneous system A′x = 0, i.e.

x5 = 0
x3 = −2x4 − x5 = −2x4
x1 = −4x2 − 3x3 − 2x4 − x5 = −4x2 + 4x4

4. Replace the free variables in x with parameters:
x = p1(−4, 1, 0, 0, 0)T + p2(4, 0,−2, 1, 0)T

5. Finally, find any solution of the non-homogeneous system
A′x = b′, e.g. x0 =

(
4,−1, 0, 1

3 ,
1
3

)T and get:

x =
(
4,−1, 0, 1

3 ,
1
3

)T + p1(−4, 1, 0, 0, 0)T + p2(4, 0,−2, 1, 0)T



Verification
Substitute x including parameters into the original system Ax = b,
ie., verify x0 for Ax = b and also x1, . . . , xn−r for Ax = 0.

Example:
For a system x1 + 4x2 + 3x3 + 2x4 + x5 = 1

2x1 + 8x2 + 4x3 = 0
3x3 + 6x4 + 9x5 = 5

2x1 + 8x2 + 7x3 + 6x4 + 3x5 = 3
substitute
x =

(
4,−1, 0, 1

3 ,
1
3

)T + p1(−4, 1, 0, 0, 0)T + p2(4, 0,−2, 1, 0)T

=
(
4− 4p1 + 4p2,−1 + p1,−2p2,

1
3 + p2,

1
3

)T as follows:

(4− 4p1 + 4p2) + 4(p1 − 1) + 3(−2p2) + 2(1
3 + p2) + 1

3 = 1
2(4− 4p1 + 4p2) + 8(p1 − 1) + 4(−2p2) = 0

3(−2p2) + 6(1
3 + p2) + 9 · 1

3 = 5
2(4− 4p1 + 4p2) + 8(p1 − 1) + 7(−2p2) + 6(1

3 + p2) + 3 · 1
3 = 3

Observe that the parameters on the left side will cancel each other.



What the tests verify
If we do not insert the solution x including the parameters into the
original system Ax = b, we may not detect the following errors:
I Without the parameters we verify only the solution x0.
I A specific choice of parameters verifies only one solution, not

all. We wouldn’t have to reveal faulty solutions.
Example: We check x = (1, 3)T + p1(1, 1)T for 2x1 + x2 = 8.
For p1 = 1, we have x = (2, 4)T , which satisfies 2 · 2 + 4 = 8, but
neither x0 = (1, 3)T nor choices of p1 are valid solutions.
I Substitution into A′x = b′ verifies the correctness of the

backward substitution, but not of Gaussian elimination.
Warning: We cannot yet verify the completeness of the solution set.
It may happen that we add a new condition due to an error in
Gaussian elimination. Then we get only a subset of all solutions.
E.g. on error in the last column we may not obtain any solution:(

1 4 3 2 1 1
0 0 1 2 1 1
0 0 −2 −4 −2 −2
0 0 3 6 9 5

)
∼

+2II

(
1 4 3 2 1 1
0 0 1 2 1 1
0 0 0 0 0 0
0 0 3 6 9 5

)
4

vs.

(
1 4 3 2 1 1
0 0 1 2 1 1
0 0 −2 −4 −2 −2
0 0 3 6 9 5

)
∼

+2II

(
1 4 3 2 1 1
0 0 1 2 1 1
0 0 0 0 0 −4
0 0 3 6 9 5

)
8



Reduced row echelon form
Definition: A row echelon form of a matrix is reduced if each pivot
is 1 and all other elements in pivot columns are 0es.

pivots 6= 0

0

0

pivots = 1

0

0

REF RREF

1
1

1
1

1

0
above pivots = 0

Fact: Every matrix A has a unique A′ in reduced row echelon form
such that A ∼∼ A′. "Pf": distinct r.r.e.f. yields different solutions.
Any matrix in row echelon form can be reduced by:
I Divide each row by ai ,j(i), thus get 1s as pivots.
I Foreach i = r , . . . , 1, eliminate each ai ′,j(i) with i ′ < i

by addition −ai ′,j(i)-multiple of the i-th row to i ′-th row.
thus to get 0es above the pivot ai ,j(i)

Example:( 1 4 3 2 1 1
0 0 1 2 1 1
0 0 0 0 6 2

)
:6

∼

( 1 4 3 2 1 1
0 0 1 2 1 1
0 0 0 0 1 1

3

)
−III

−III ∼ 1 4 3 2 0 2
3

0 0 1 2 0 2
3

0 0 0 0 1 1
3

−3II

∼

 1 4 0 −4 0 − 4
3

0 0 1 2 0 2
3

0 0 0 0 1 1
3


This process is sometimes called the Gauss -Jordan elimination.
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Advantages of reduced row echelon form
x =

(
−4

3 , 0,
2
3 , 0,

1
3

)T + p1(−4, 1, 0, 0, 0)T + p2(4, 0,−2, 1, 0)T 1 4 3 2 1 1
0 0 1 2 1 1
0 0 0 0 6 2

 ∼∼


1 4 0 −4 0 −4
3

0 0 1 2 0 2
3

0 0 0 0 1 1
3




1 4 0 −4 0 −4
3

0 0 1 2 0 2
3

0 0 0 0 1 1
3


yields directly the solution
x0 =

(
−4

3 , 0,
2
3 , 0,

1
3

)T
by choosing x2 = x4 = 0 1 4 0 −4 0 0

0 0 1 2 0 0
0 0 0 0 1 0

 solves directly Ax = 0 as
x1 = (−4, 1, 0, 0, 0)T ,
i.e. for x2 = 1 and x4 = 0 1 4 0 −4 0 0

0 0 1 2 0 0
0 0 0 0 1 0

 solves directly Ax = 0 as
x2 = (4, 0,−2, 1, 0)T ,
i.e. for x2 = 0 and x4 = 1



Ill-conditioned system

667x1 − 835x2 = 168
266x1 − 333x2 = 67

solution x = (−1,−1)T

667x1 − 835x2 = 168
266x1 − 333x2 = 68

solution x = (834, 666)T

x1

x2

-1

-1 834

666
1/333

.
= 0, 003


