
Sample problem — a system of linear equations

Solve the following system of linear equations:
x1 + 4x2 + 3x3 + 2x4 + x5 = 1

2x1 + 8x2 + 4x3 = 0
3x3 + 6x4 + 9x5 = 5

2x1 + 8x2 + 7x3 + 6x4 + 3x5 = 3
Questions:
▶ How to efficiently describe the system?
▶ What do we mean by a solution of the system?
▶ How to get some or all solutions of the system?



Real vectors

Definition: A real vector b with m components
is an ordered m-tuple of real numbers b =


b1
b2
...

bm

.
We write b ∈ Rm.

We consider column vectors.
For the row-wise notation
we use the transposition, i.e. b =


b1
b2
...

bm

 = (b1, b2, . . . , bm)T.

The vector 0m = (0, . . . , 0)T ∈ Rm is the zero vector.
When the context is clear, it can be written shortly as 0.

An ordered n-tuple of variables x = (x1, . . . , xn)T
is the vector of unknowns.



Real matrices

Definition: A real m × n matrix A
is a collection of mn real numbers
arranged in an array with m rows
and n columns.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn


We write A ∈ Rm×n.

The elements of a matrix are denoted as (A)i ,j = ai ,j .
If the indices are obvious, the comma can be omitted
and only aij or (A)ij can be written.
Otherwise, we leave the comma, e.g., to distinguish
a12,3 from a1,23; or ai ,jk from aij,k ; or for the element ai ,j(i), etc.

A square matrix of order n has n rows and n columns.



Systems of linear equations
Definition: Let A ∈ Rm×n, b ∈ Rm and x = (x1, . . . , xn)T
is a vector of unknowns.
The system of m linear equations in n unknowns is Ax = b,
in expanded form written as:

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

...
... . . . ...

...
am1x1 + am2x2 + . . . + amnxn = bm

The matrix A is the matrix of the system,
the vector b is the right-hand side vector,
the matrix (A|b) ∈ Rm×(n+1) is the augmented matrix.

A vector x ∈ Rn is a solution of the system Ax = b
if it satisfies all its m equations, i.e:

∀i ∈ {1, . . . , m} : ai1x1 + ai2x2 + · · · + ainxn = bi .
Systems Ax = 0 are called homogeneous and always allow x = 0.



Example
The augmented matrix of the system of linear equations

x1 + 4x2 + 3x3 + 2x4 + x5 = 1
2x1 + 8x2 + 4x3 = 0

3x3 + 6x4 + 9x5 = 5
2x1 + 8x2 + 7x3 + 6x4 + 3x5 = 3

is formed by
its coefficients:

(A|b) =


1 4 3 2 1 1
2 8 4 0 0 0
0 0 3 6 9 5
2 8 7 6 3 3


The vector x = (x1, . . . , x5)T =

(
4, −1, 0, 1

3 , 1
3

)T
is a possible

solution of this system Ax = b, since it satisfies all its equations:
4 + 4 · (−1) + 3 · 0 + 2 · 1

3 + 1
3 = 1

2 · 4 + 8 · (−1) + 4 · 0 = 0
3 · 0 + 6 · 1

3 + 9 · 1
3 = 5

2 · 4 + 8 · (−1) + 7 · 0 + 6 · 1
3 + 3 · 1

3 = 3



Geometric meaning — one equation in two unknowns

a1x1 + a12x2 = b1 or equivalently
(
a11 a12

)(x1
x2

)
=
(
b1
)

▶ If a11 ̸= 0 or a12 ̸= 0 then the set of solutions forms a line in
the Euclidean plane.

x1

x2

(0, 0)T = 0

(0, b1
a12

)T

( b1
a11

, 0)T

▶ It could be parallel to one of the axes, e.g. to x1, if a11 = 0.
Degenerate cases:
▶ If a11 = a12 = 0 and b1 ̸= 0, then the system has no solution.
▶ If a11 = a12 = 0 and b1 = 0, then all points of the Euclidean

plane are solutions.



Two equations in two unknowns
a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

or
(

a11 a12
a21 a22

)(
x1
x2

)
=
(

b1
b2

)
If both equations are nondegenerate, then the set of solutions is
the intersection of two lines, which could be
▶ a point:

x1

x2

0
▶ an empty set, if the two lines are distinct parallel,
▶ a line, if the two lines are identical.

Among the degenerate cases, the system 0x = 0
also yields all points of the Euclidean plane as the set of solutions.



One equation in three unknowns

a11x1 + a12x2 + a13x3 = b1
▶ In the nondegenerate case a11 ̸= 0 ∨ a12 ̸= 0 ∨ a13 ̸= 0

solutions form a plane in the 3-dimensional Euclidean space:

x1

x2

0

(0, b1
a12

, 0)T

( b1
a11

, 0, 0)T

x3

(0, 0, b1
a13

)T

Degenerate cases:
▶ If a11 = a12 = a13 = 0 and b1 ̸= 0, then no solution exists.
▶ If a11 = a12 = a13 = 0 and b1 = 0 then all points of the

Euclidean space are solutions.



Elementary equivalent row transformations

Definition: We write A ∼ A′ if A′ is obtained from A by any
of the following elementary equivalent row transformations:

1. Multiplication of the i-th row by a nonzero t ∈ R \ {0},

formally: a′
kl =

{
akl if k ̸= i
tail if k = i

2. Adding the j-th row to the i-th row,

formally: a′
kl =

{
akl if k ̸= i
ail + ajl if k = i

From the two above the following two can be derived:
3. Adding the j-th row multiplied by t ∈ R to the i-th row.
4. Exchange of two rows.

A series of elementary transformations is denoted as A ∼∼ A′.



Use of elementary transformations
Theorem: Let Ax = b and A′x = b′ be two systems such that
(A|b) ∼∼ (A′|b′). Then both systems have identical solution sets.
Example:

(A|b) =


1 4 3 2 1 1
2 8 4 0 0 0
0 0 3 6 9 5
2 8 7 6 3 3


·2

∼


2 8 6 4 2 2
2 8 4 0 0 0
0 0 3 6 9 5
2 8 7 6 3 3


−II

∼


0 0 2 4 2 2
2 8 4 0 0 0
0 0 3 6 9 5
2 8 7 6 3 3

 IV

III

∼


0 0 2 4 2 2
2 8 4 0 0 0
2 8 7 6 3 3
0 0 3 6 9 5

 = (A′|b′)

The vector x =
(
4, −1, 0, 1

3 , 1
3

)T
solves also the system A′x = b′,

since 2 · 0 + 4 · 1
3 + 2 · 1

3 = 2, and the rest is only ordered differently.

However, the theorem applies not only to this particular solution
and the chosen transformations, but also for any possible solution
and any sequence of transformations.

Proof: It suffices to show that the solution set is preserved if a
single transform of the first or of the second type is performed.
We aim to show that {x ∈ Rn : Ax = b} = {x ∈ Rn : A′x = b′}.
The set equality follows from two inclusions ⊆ and ⊇, seen as
implications a: Ax = b ⇒ A′x = b′, and b: A′x = b′ ⇒ Ax = b.
1a. Ax = b ⇒ A′x = b′ for the i-th row scaling by t ̸= 0:

As only the i-th row/equation is changed, any solution of
Ax = b satisfies the unchanged equations of A′x = b′.
It remains to verify the i-th equation of A′x = b′.
From the left hand side to the right: a′

i1x1 + · · · + a′
inxn =

tai1x1 + · · · + tainxn = t(ai1x1 + · · · + ainxn) = tbi = b′
i

Used: a′
il = tail (definition), tc + td = t(c + d) (extraction),

ai1x1 + · · · + ainxn = bi (assumption), tbi = b′
i (definition).

Green indicates the relationship between (A|b) and (A′|b′) i.e.
the elementary transformation; red the assumption Ax = b.
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Summary of cases a single elementary transformation of the first or
of the second second type and the i-th equation:
1a. Ax = b ⇒ A′x = b′ : a′

i1x1 + · · · + a′
inxn =

tai1x1 + · · · + tainxn = t(ai1x1 + · · · + ainxn) = tbi = b′
i

1b. A′x = b′ ⇒ Ax = b : ai1x1 + · · · + ainxn =
1
t (tai1x1 + · · ·+ tainxn) = 1

t (a′
i1x1 + · · ·+a′

inxn) = 1
t b′

i = 1
t tbi =bi

2a. Ax = b ⇒ A′x = b′ : a′
i1x1 + · · · + a′

inxn =
(ai1 + aj1)x1 + · · · + (ain + ajn)xn =
(ai1x1 + · · · + ainxn) + (aj1x1 + · · · + ajnxn) = bi + bj = b′

i
2b. A′x = b′ ⇒ Ax = b : ai1x1 + · · · + ainxn =

ai1x1 + · · · + ainxn + bj − bj =
(ai1x1 + · · · + ainxn) + (aj1x1 + · · · + ajnxn) − bj =
(ai1 + aj1)x1 + · · · + (ain + ajn)xn − bj =
(a′

i1x1 + · · · + a′
inxn) − bj = b′

i − bj = bi + bj − bj = bi

The color of = means either the transform from (A|b) to (A′|b′),
the assumption of the case, or an algebraic rearrangement of terms.



Geometric meaning of elementary transformations
1., 4. Multiplication of a row or swapping two rows does not change

the position of the hyperplanes.
2., 3. Adding the j-th row (multiplied by t ∈ R) to the i-th row

moves the i-th hyperplane so that the intersection with the
others remains unchanged.

i-th

j-th

(i + j)-th

j-th

i-th new

Goal: move the hyperplanes so the solution could be seen easily.
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x2 = 3
+2×, : 5 −2×, ·(−1)
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Questions to understand the lecture topic

▶ How does the solution set of a system change geometrically
when we alter b, i.e. the right-hand side vector?

▶ How the systems without a solution in R2 and R3 can be
described geometrically?
(Discuss possible cases of positions of lines and planes.)

▶ May t = 0 in the third elementary transformation?
▶ Where was used the assumption t ̸= 0 in the first elementary

equivalent transformation?
▶ Which algebraic operations were used in the proof of case 2b

of the theorem about elementary transforms and solution sets?
▶ What property do have geometric transforms corresponding to

elementary transformas if the system has no solution?


