Optimal Bounds for Open Addressing Without Reordering Martin Farach-Colton , Andrew Krapivin , William Kuszmaul

Presented by - Amit Roy

March 27, 2025

Presented by - Amit Roy OPTIMAL BOUNDS FOR OPEN ADDRESSING

Hash Table

- Support dictionary operations INSERT, SEARCH and DELETE
- Uses a hash function $h: [u] \rightarrow [m]$ to index keys

э

Collision Resolutions

- Chaining Each slot in the table is a pointer to a linked list which stores the keys
- Open Addressing All elements occupy the hash table itself

Chaining vs Open-Addressing

Figure: Open Addressing

э

1

Definitions

Probe Complexity

- The number of probes that an algorithm has to make to insert/search the key is called the probe complexity of the key.
- For example, for a key k, if an algorithm probes $h_1(k), h_2(k), \ldots, h_t(k)$ to find an empty slot to insert the key, then the probe complexity of k is t.

Uniform Probing

For a given key k, the probe sequence - $h_1(k), h_2(k), \ldots, h_t(k)$ is a random permutation of $\{1, 2, \ldots, n\}$

Greedy and Non-greedy Open-Addressing

- **Greedy** : Any algorithm in which each element uses the first unoccupied position in its probe sequence.
- **Non-greedy :** May probe further before inserting the element in the hash table

Results

Greedy

- Worst-case expected probe complexity $\mathcal{O}(\log^2 \delta^{-1})$
- High-probability worst-case probe complexity $\mathcal{O}(\log^2 \delta^{-1} + \log \log n)$
 - ★ Matching lower bound

On-Greedy

- Amortized probe complexity $\mathcal{O}(1)$
- ► Worst-case expected probe complexity O(log δ⁻¹)
 - ★ Matching lower bound

Theorem - Greedy Open-Addressing

Let $n \in \mathbb{N}$ and $\delta \in (0, 1)$ be parameters such that $\delta > \mathcal{O}(1/n^{o(1)})$. There exists a **greedy** open-addressing strategy that supports $n - \lfloor \delta n \rfloor$ insertions that has

- worst-case expected probe complexity (and insertion time) $\mathcal{O}(\log^2 \delta^{-1})$
- worst-case probe complexity over all insertions $O(\log^2 \delta^{-1} + \log \log n)$, with prob 1 1/poly(n),
- amortized expected probe complexity $\mathcal{O}(\log \delta^{-1})$

< 口 > < 同 > < 回 > < 回 > < 回 > <

Funnel Hashing

イロト イポト イヨト イヨト

æ

Funnel Hashing

Algorithm 1: Insert key k into the hash table

```
for i = 1 to \alpha do

if Insertion_Attempt(i, k) is successful then

| return;

end

end

Insert into special array A_{\alpha+1}
```

ヨト イヨト

Funnel Hashing

 Algorithm 2: Insertion Attempt of key k in A_i

 Hash k to obtain a subarray index $j \in \left[\frac{|A_i|}{\beta}\right]$;

 for each slot in $A_{i,j}$ do

 if slot is empty then

 | Insert key and return success;

 end

 Return fail;

11 / 20

Algorithm for special array $A_{\alpha+1}$

- **()** Split $A_{\alpha+1}$ into two subarrays *B* and *C* of equal size.
- First, try to insert in B. Upon failure insert into C (insertion to C is guaranteed to succeed with high probability)
- B is implemented as a uniform probing table, and we give up searching through B after log log n attempts.
- C is implemented as a two-choice table with buckets of size 2 log log n.

Proof

Lemma 1

For a given $i \in \alpha$, we have with probability $1 - \frac{1}{n^{\omega(1)}}$ that, after $2|A_i|$ insertion attempts have been made in A_i , fewer than $\frac{\delta}{64}|A_i|$ slots in A_i remain unfilled.

Lemma 2

The number of keys inserted into $A_{\alpha+1}$ is fewer than $\frac{\delta}{8}n$, with probability $1 - \frac{1}{n^{\omega(1)}}$.

Proof

Lemma: Power of two choices

If *m* balls are placed into *n* bins by choosing two bins uniformly at random for each ball and placing the ball into the emptier of the two bins, then the maximum load of any bin is $m/n + \log \log n + O(1)$ with high probability in *n*.

Probe Complexity of $A_{\alpha+1}$

Complexity of inserting into ${\boldsymbol{B}}$ -

- B has size $A_{\alpha+1}/2 \ge \delta n/4$, so load factor never exceeds 1/2.
- Each insertion makes log log n, each of which has success probability of 1/2.
- Thus, expected number of probles is $\mathcal{O}(1)$
- Probability that insertion fails after all attempts is 1/2^{log log n} ≤ 1/ log n.

```
Probe Complexity of A_{\alpha+1}
```

Complexity of inserting into C -

- Recall, C is implemented as a two choice table with buckets of size 2 log log n
- From Lemma we have that, with high probability, no bucket in C overflows.
- Solution Sector Expected time of each insertion in C is at most o(1).

Analysis

- ► $k = O(\log \delta^{-1})$ levels
- Level cutoff $c = O(\log \delta^{-1})$
- Worst case (expected) probe complexity: $ck = O(\log^2 \delta^{-1})$

3 × 4 3 ×

< 4 ₽ >

3

Proof

- Total α arrays , and cutoff probes β in each A_i
- Probe complexity of each insertion $\beta \alpha + f(A_{\alpha+1})$
- Assume $\delta \leq \frac{1}{8}$. Let $\alpha = \lceil 4 \log \delta^{-1} + 10 \rceil$ and $\beta = \lceil 2 \log \delta^{-1} \rceil$
- Probe Complexity $\mathcal{O}(\log^2 \delta^{-1}) + f(A_{\alpha+1})$
- Hence, O(log² δ⁻¹) in worst-case expected probe complexity and a high-probability worst-case probe complexity of O(log² δ⁻¹ + log log n).

Other Results

1. Elastic Hashing

Theorem - Non-greedy Open-Addressing

Let $n \in \mathbb{N}$ and $\delta \in (0, 1)$ be parameters such that $\delta > \mathcal{O}(1/n)$. There exists an open-addressing hash table that supports $n - \lfloor \delta n \rfloor$ insertions in an array of size n, that does not reorder items after they are inserted, and that offers -

- amortized expected probe complexity O(1)
- worst-case expected probe complexity $\mathcal{O}(\log \delta^{-1})$, and
- worst-case expected insertion time $\mathcal{O}(\log \delta^{-1})$.

Other Results

2. Lower Bounds

Theorem - Lower Bound for Greedy Algorithms

Let $n \in \mathbb{N}$ and $\delta \in (0, 1)$ be parameters such that δ is an inverse power of two. Consider any greedy open-addressed hash table with capacity n. If $(1-\delta)n$ elements are inserted into the hash table, then the final insertion must take expected time $\Omega(\log^2 \delta^{-1})$.

More Proofs

Lemma 2

The number of keys inserted into $A_{\alpha+1}$ is fewer than $\frac{\delta}{8}n$, with probability $1 - \frac{1}{n^{\omega(1)}}$.

- From Lemma 1, every fully-explored A_i is at least $(1 \delta/64)$ full, where fully-explored means at least $2|A_i|$ insertion attempts made to A_i .
- Let λ ∈ [α] be largest index s.t. A_λ receives fewer than 2|A_λ| insertion attempts.
- Case 1: λ ≤ α − 10
 - For $i > \lambda$, A_i contains at least $|A_i|(1 \delta/64)$ keys.
 - Total keys in $i \ge \lambda$: $(1 \delta/64) \sum_{i=\lambda+1}^{\alpha} |A_i| \ge 2.5(1 \delta/64) |A_{\lambda}|$
 - This contradicts that A_{λ} received at most $2|A_{\lambda}|$ insertion attempts.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Lemma 2 Proof Contd

• Case 2 : $\alpha - 10 < \lambda \le \alpha$

- Fewer than $A_{\alpha-10} < n\delta/8$ keys are attempted to be inserted in A_i with $i \ge \lambda$. Hence, we are good.
- Case 3: $\lambda = null$
 - Each A_i has at most $\delta |A_i|/64$ empty slots.
 - Total empty slots at the end of insertion : $|A_{\alpha+1}| + \sum_{1}^{\alpha} \frac{\delta |A_i|}{64} < n\delta$
 - This contradicts that after n(1 δ) insertions, there are at least nδ slots empty.

Proof of Lemma 1

Lemma 1

For a given $i \in \alpha$, we have with probability $1 - \frac{1}{n^{\omega(1)}}$ that, after $2|A_i|$ insertion attempts have been made in A_i , fewer than $\frac{\delta}{64}|A_i|$ slots in A_i remain unfilled.

THOUGHTS AND QUESTIONS ?

THANKS

Presented by - Amit Roy OPTIMAL BOUNDS FOR OPEN ADDRESSING March 27, 2025 24/20

< □ > < @ >

э

∃ ► < ∃ ►</p>