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Sphere packing problem

Sphere packing problem: Determine the largest fraction θ(d) of Rd that can be
covered by a collection of disjoint spheres of volume one?

d = 1: θ(d) = 1
d = 2: θ(d) ≈ 0.90960 Lagrange (1773)*, Thue (1890), Tóth (1942)

(*for lattice sphere packings)

d = 2 [1]
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Sphere packing problem

Sphere packing problem: Determine the largest fraction θ(d) of Rd that can be
covered by a collection of disjoint spheres of volume one?

d = 1: θ(d) = 1
d = 2: θ(d) ≈ 0.90960 Lagrange (1773)*, Thue (1890), Tóth (1942)
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Sphere packing problem

Sphere packing problem: Determine the largest fraction θ(d) of Rd that can be
covered by a collection of disjoint spheres of volume one?

d = 1: θ(d) = 1
d = 2: θ(d) ≈ 0.90960 Lagrange (1773)*, Thue (1890), Tóth (1942)
d = 3: θ(d) ≈ 0.74048 Gauss (1831)*, Hales (1998)

(*for lattice sphere packings)

d = 2 [1] d = 3 [2]
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Lower bounds

Question: How θ(d) behaves as d → ∞?

Lemma (Trivial lower bound)

θ(d) ≥ 1/2d .

Proof.
• Consider a maximal sphere packing P
• We can cover the whole Rd by doubling the radius of each ball in P
• Hence θ(d) ≥ 1/2d , as required
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Lower bounds

Selected lower bounds:

Minkowski (1905): θ(d) ≥ (1− o(1))c · 1
2d

for c = 2

Rogers (1947): θ(d) ≥ (1− o(1))c · d
2d

for c = 2/e
...
Venkatesh (2013): θ(d) ≥ (1− o(1))c · d

2d
for c = 65963

Venkatesh (2013): θ(d) ≥ (1− o(1))c · d log log d
2d

for c = 1/2 and some
sparse sequence of d

Theorem (Campos, Jenssen, Michelen, Sahasrabudhe; 2024)

θ(d) ≥ (1− o(1))
d log d

2d+1
.

Remark: Up to a constant factor, the best known upper bound on θ(d) is
1/2(0.599... + o(1))d by Kabatjanskii and Levenstein (1978).
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Order vs. disorder

• A sphere packing P ⊆ Rd is called a lattice sphere packing if the centers of
the balls in P are contained in some lattice L

• A set of points L ⊆ Rd is called a lattice if

L = {α1x1 + . . .+ αdxd : x1, . . . , xd ∈ Z}

for some α1, . . . , αd ∈ R+

• Optimal solution for d ∈ {1, 2, 3, 8, 24} is achieved by a lattice sphere packing

• However, lattice sphere packings are provably not optimal for some
dimensions d (e.g. d = 10)
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Formal definition of Sphere packing problem

• Notation:
▶ B0(R) ... the ball in Rd of radius R centered in the origin
▶ rd ... the radius of the ball of volume 1 in Rd (rd = c

√
d for some c ∈ R)

• A set of points P ⊆ Rd is a sphere packing if ∀x ̸= y ∈ P : ∥x − y∥ ≥ 2rd
• The density of sphere packing P is

θ(P) = lim sup
R→∞

|P ∩ B0(R)|
Vol(B0(R))

• The sphere packing density is

θ(d) = sup
P

θ(P) = sup
P

lim sup
R→∞

|P ∩ B0(R)|
Vol(B0(R))

Theorem (Campos, Jenssen, Michelen, Sahasrabudhe; 2024)

θ(d) ≥ (1− o(1))
d log d

2d+1
.
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Proof overview

Lemma

θ(d)
def
= sup

P
lim sup
R→∞

|P ∩ B0(R)|
Vol(B0(R))

= lim sup
R→∞

sup
P

|P ∩ B0(R)|
Vol(B0(R))

.

Goal: For R > 0, construct a sphere packing P ⊆ B0(R) of size

(1− o(1))Vol(B0(R))
d log d

2d+1

Proof overview:

• Sample a finite set of points X ⊆ B0(R) (candidates for centers for the
spheres)

• Consider a graph GX , where

V (GX ) = X and E (GX ) =
{
{x , y} : ∥x − y∥ < 2rd

}
• Find in GX independent set of size (1− o(1))Vol(B0(R))

d log d
2d+1
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Proof overview: Sampling X

Intuitively, for ε → 0, we sample points from εZd ∩ B0(R), each independently
with probability λ · 1

εd

Formally, we consider X ∼ Pois(λ,B0(R)); that is a Poisson point process in
B0(R) with intensity λ

Poisson point process X has the following properties:

• (Poisson distribution of points count) For a Borel set B ⊆ B0(R), we have
|X ∩ B| ∼ Pois(λ · Vol(B))

• (Independent scattering) For pairwise disjoint Borel sets B1, . . . ,Bk ,
|X ∩ B1|, . . . , |X ∩ Bk | are pairwise independent random variables

Recall that Y ∼ Pois(λ) denotes a Poisson random variable with intensity λ; that
is Pr[Y = k] = λke−λ/k! for k = 0, 1, 2, . . .
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Proof overview: basic properties of X

• |X | ≈ λ · Vol(B0(R))

• degGX
(u) = |X ∩ Bu(2rd)| ≈ λ · 2d

• ∆(GX ) ≈ λ · 2d

• =⇒ α(GX ) ≥ |X |
∆(GX )+1 ≈ λ·Vol(B0(R))

λ·2d = Vol(B0(R))
2d

• =⇒ θ(d) ≥ 1/2d
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Proof overview: basic properties of X

• |X | ≈ λ · Vol(B0(R))

• degGX
(u) = |X ∩ Bu(2rd)| ≈ λ · 2d

• ∆(GX ) ≈ λ · 2d

• =⇒ α(GX ) ≥ |X |
∆(GX )+1 ≈ λ·Vol(B0(R))

λ·2d = Vol(B0(R))
2d

• =⇒ θ(d) ≥ 1/2d

A new lower bound for sphere packing David Mikšańık 9 / 15
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Proof overview: basic properties of X

• |X | ≈ λ · Vol(B0(R))

• degGX
(u) = |X ∩ Bu(2rd)| ≈ λ · 2d

• ∆(GX ) ≈ λ · 2d

• =⇒ α(GX ) ≥ |X |
∆(GX )+1 ≈ λ·Vol(B0(R))

λ·2d = Vol(B0(R))
2d

• =⇒ θ(d) ≥ 1/2d

A new lower bound for sphere packing David Mikšańık 9 / 15



Proof overview: removing triangles

With λ = 1
2d−cd we can do better:

• E(number of triangles containing u and v) = λ · Vol(Bu(2rd) ∩ Bv (2rd)) ≪
1/∆(GX) = 1/(λ · 2d) (for u and v not too close)

• E(number of triangles) ≪ |X|∆(GX) · 1/∆(GX) = |X|
• Let X ′ ⊆ X be obtained from X be removing a point from each triangle

• By Shearer’s theorem (1983): If G is a triangle-free graph, then

α(G ) ≥ (1− o(1)) |V (G)| log(∆(G))
∆(G) , we have

α(GX ) ≥ α(GX ′) ≥ (1− o(1))
|X ′| log(∆(GX ′))

∆(GX ′)
≈ (1− o(1))

|X | log(∆(GX ))

∆(GX )

≈ (1− o(1))
|X | log(λ · d)

λ · 2d
= (1− o(1))Vol(B0(R))

c · d
2d
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Proof overview

• λ = (
√
d

8 log d )
d

• ∆2(GX ) = max
{
|N(u) ∩ N(v)| : u ̸= v ∈ V (Gx)

}

Lemma (S)

There exists a set of points X ⊆ B0(R) such that

|X | ≥ (1− o(1))λ · Vol(B0(R))

and
∆(GX ) ≤ ∆(1 +∆−1/3) and ∆2(GX ) ≤ ∆(log∆)− log log ∆,

where ∆ = λ · 2d =
( √

d
4 log d

)d

.

Lemma (G)

If ∆2(G ) ≤ C∆(G )/(log∆(G ))c , then α(G ) ≥ (1− o(1)) |G | log ∆(G)
∆(G) .
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Proof overview

• λ = (
√
d

8 log d )
d

• ∆2(GX ) = max
{
|N(u) ∩ N(v)| : u ̸= v ∈ V (Gx)

}
Lemma (S)

There exists a set of points X ⊆ B0(R) such that

|X | ≥ (1− o(1))λ · Vol(B0(R))

and
∆(GX ) ≤ ∆(1 +∆−1/3) and ∆2(GX ) ≤ ∆(log∆)− log log ∆,

where ∆ = λ · 2d =
( √

d
4 log d

)d

.

Lemma (G)

If ∆2(G ) ≤ C∆(G )/(log∆(G ))c , then α(G ) ≥ (1− o(1)) |G | log ∆(G)
∆(G) .

A new lower bound for sphere packing David Mikšańık 11 / 15
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Proof overview

Proof of the theorem.
• By Lemma (S), there exists X ⊆ B0(R) with |X | ≥ (1− o(1))λ · Vol(B0(R))

for which

∆(GX ) ≤ ∆(1 +∆−1/3) and ∆2(GX ) ≤ ∆(log∆)− log log ∆.

• And by Lemma (G), we have

α(G ) ≥ (1− o(1))
|X | log∆(1 + ∆−1/3)

∆(1 + ∆−1/3)
≥ (1− o(1))

|X | log∆
∆

= (1− o(1))Vol(B0(R)) · λ
log∆

∆

= (1− o(1))Vol(B0(R))
1

2d
· log

( √
d

4 log d

)d

≥ (1− o(1))Vol(B0(R))
1

2d
· d log d

2
.

Remark: Lemma (G) is tight (up to the constant c and C ).
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A newer lower bound for sphere packing

Theorem (Klartag; 2025)

θ(d) ≥ c · d2

2d+1

for some absolute constant c .
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