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Ramsey theorem and Ramsey numbers

For every s, t € N, there is a value r(s,t) such that any graph on
at least r(s, t) vertices contains either a clique of size s or an
independent set of size t.

® The Erdds-Szekeres's proof gives the relation

r(s,t) <r(s—1,t)+r(s,t —1).

r+s—2> .

The relation is satisfied by ( 1

Thus, r(s,s) < 4°.
Also, for any fixed s € N, r(s, t) € O(4t71).
® Moreover, it is known that for fixed s € N

s—1

r(s,t) e (1+ 0(1))W

by Ajtai, Komlds, Szemerédi.
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Main theorem
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Lower bounds

Task: for given s,t € N, find a graph without K and K as large
as possible.

Common approaches:
® Randomness

® Algebraic construction
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Finite projective planes

Finite projective plane is a finite set system (X, P) satisfying:
@ for every distinct P1, P> € P, there is a unique x € X such
that x € P N Py,

@ for every distinct x1, x> € X, there is a unique P € P such
that x1,x2 € P,

@ there is a set S C X, |S| = 4, with the property that for each
P € P contains at most two point of S.
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Basic properties of FPP

Let (X, P) be a finite projective plane. There is a value n € N
such that

@® cach x € X lies in exactly n+ 1 lines,

@ each P € P contains exactly n+ 1 points,
@ |X|=n*>+n+1,

®Pl=n+n+1

There is a FPP of each order g that is a power of a prime. We
denote this FPP by FPP(q).
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Using FPP

ex(n, C4) = the maximum number of edges of a C4-free graph on n
vertices
Known: ex(n, C4) € O(n*?) (by counting K 2; cherries)

Proposition

There are arbitrarily large C4-free graphs on n vertices with
Q(n3/?) edges.

v

Let (X, P) be a projective plane of order p and consider its
incidence graph G = (V, E). Note that C4 € G. Moreover,

V| =2(p* +p+1),
E| = (p? +p+1)(p+1)> (p? +p+1)%2

Thus, |E| > ¢|V|3/? for some fixed c € R. O

\,
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Constructing FPP from a field

Let IF,, be a finite field with n elements. We define (X, P) of order
n as follows:

@ We set X to be the lines of F> (subspaces of dimension 1),
i.e. vectors (x,y,z) € F3\ {(0,0,0)} factorized by scalar
multiplication,

@ moreover, P is the set of planes (subspaces of dimension 2)
such that each P € P is formed by the lines (members of X)
that are contained in the plane.

That is, if P is represented by the normal vector
(a,b,c) € F3\ {(0,0,0)}, then P contains exactly those
vectors (x,y, z) for which

ax+ by +cz=0.
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Overview

® Using the magical properties of FPP, we obtain a graph Hg
with
* n=q°(g?> — q +1) vertices,
® edges are a union of g3 + 1 edge-disjoint cliques of order g2,
® each copy of K, in Hy has at least three vertices in one of
these cliques.
® We consider the random n-vertex graph Hg as a union of
complete bipartite subgraphs of the cliques of Hy (hence, Hg
is Ky-free).
® There is an instance G, of H; with at least 24043 edges; using
the container method, it has at most (q/log? ) independent
sets of size t = 23%¢log? q.
® Thus, by sampling vertices with probability (Iog2 q)/q, we
obtain a graph with at least (q°log? q)/2 vertices and no
independent sets of size t, yielding r(4,t) > ct3/log* t.
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The FPP magic — Hermitian unital

Consider the following subset of points of FPP(g?)
H={(x.y.z) : xITt 4yt 4 29t — o},

It satisfies the following:
0 [H|=q>+1,
@ every line of FPP(q?) intersects H either in 1 (tangents) or
g + 1 points (secants).

Restricting FPP(g?) to the points of H and secants S of H yields
a Steiner (g + 1)-tuple system.

Moreover, the restriction does not contain the O’Nan
configuration.



Introduction Proof sketch Lower bound methodology
0000000 00e000 00000000

The FPP magic — the graph H,

We define H, as follows:

V(Hy) = S,
E(Hq) = {(5,5) : thereis x € H, such that x € SN S’}

Then,
® |V(Ho)l = ¢*(¢* —q +1),
@ there is a set C of g° + 1 maximal cliques of order g2, every
two sharing exactly one vertex,

@ each vertex lies in exactly g + 1 cliques of C,

® every copy of Ky in Hy contains at least three vertices in some
clique of C.

Moreover, for each X C V/(H,) of size 2242, many edges of H,[X]
lie in many cliques.
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The random Kj-free graph H;

For each maximal clique C € C of H,, let (Ac, B¢c) be a random
partition of V/(C) such that each v € V(C) belongs to Ac, resp.
Bc, with probability 1/2 (independently).

Then Hg is the random graph consisting of the union over all
maximal cliques C € C of the complete bipartite subgraph with
parts Ac and Bc.

There is a realization of G, of Hj such that for every set

X C V(G}) of size at least 2**¢?,

N |X|2
G [X]) > .
e(Gq[X1) 256q
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The container method

Proposition

Let G be a graph on n vertices, and let r,R € N, and o € [0, 1]
satisfy:
e “n <R,

and, for every subset X C V/(G) of at least R, vertices,
2e(X) > alX|?.

Then the number of independent sets of size t > r in G is at most

(D5,
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Randomly sampling from G,

® By applying the container method appropriately, we obtain
that G; has at most (q/ log? )t independent sets of size

t =239 log? q.
® Randomly sample a set V of vertices of G with probability
log? q/q independently for each vertex.

® Then the expected number of independent sets of size t is at
most 1.

o |t follows that there is a Kj-free graph with
3 o2 3
g’ log”q > ¢ t4
2 log™ t

vertices and no independent set of size t.



Introduction Proof sketch Lower bound methodology
0000000 000000 €0000000

Proof review

What was key in the proof?

To obtain the graph G; with the properties:
® K,-free,

® every sufficiently large set induces many edges.

Unsurprisingly.
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(n,d, \)-graphs

We say that G is an (n, d, \)-graph if
0 [V(G)=n
@ G is d-regular,
@ the second largest eigenvalue (in the absolute value) is \.
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(n, d, \)-graphs are pseudorandom

Theorem (Expander mixing lemma)

Let G be an (n,d, \)-graph and let X C V(G). Then

2e(X) — g|><|2 < \|X].
n

The smaller value of )\, the better.
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The value )\ cannot be too small

Theorem (Alon-Boppana)

Letd > 1. If G is a d-regular graph, then
A>2vd-—1.

In light of this theorem, we refer to an (n, d, \)-graph with
A € O(V/d) as a spectrally extremal graph.

They exist for arbitrarily large fixed d (Ramanujan graph, 1980's),
but also for d depending on n.
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K,-free graph cannot have d too large

Theorem (Sudakov, Szabo and Vu)
Let G be a Ks-free (n,d, \)-graph. Then

de o (AﬁnPﬁ) .

If G is spectrally extremal, this gives

de O (nlfﬁ) .

Lower bound methodology
0000@000

The best we know is d € @(nl_?ll).
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Application of K,-free (n, d, \)-graphs

Theorem (Mubayi, Verstaete)

If there exists a spectrally extremal Ks-free (n, d, \)-graph with
d € O(n'=1/(25=3)) then

r(s,t) € Q <(|Ogtst;215_4> .

Recall that it is known

s—1

r(s,t) < (1+ o(l))W.
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Counting independent sets again

The previous theorem relies on the container method, which
implies:

Proposition

If G is an (n, d, \)-graph, then the number of independent sets of
size t > 2n(log n)?/d is at most

( 4e2)\ )t
log?n)
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Counting independent sets again — better?

If there is C > 0 such that the number of independent sets of size
t > C(2nlogn)/d in G is at most

CA\*
logn) ’

the previous theorem would give (conditionally) that

r(s,t) € Q <(|o:t)15—2> .




Thank you.
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