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Ramsey theorem and Ramsey numbers

Theorem

For every s, t ∈ N, there is a value r(s, t) such that any graph on
at least r(s, t) vertices contains either a clique of size s or an
independent set of size t.

• The Erdős-Szekeres’s proof gives the relation

r(s, t) ≤ r(s − 1, t) + r(s, t − 1).

• The relation is satisfied by
(r+s−2

r−1

)
.

• Thus, r(s, s) ≤ 4s .
• Also, for any fixed s ∈ N, r(s, t) ∈ O(4t−1).
• Moreover, it is known that for fixed s ∈ N

r(s, t) ∈ (1 + o(1))
ts−1

(log t)s−2

by Ajtai, Komlós, Szemerédi.
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Main theorem

Theorem

As t → ∞,

r(4, t) ∈ Ω

(
t3

(log t)4

)
.
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Lower bounds

Task: for given s, t ∈ N, find a graph without Ks and K t as large
as possible.

Common approaches:

• Randomness

• Algebraic construction
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Finite projective planes

Finite projective plane is a finite set system (X ,P) satisfying:

i for every distinct P1,P2 ∈ P, there is a unique x ∈ X such
that x ∈ P1 ∩ P2,

ii for every distinct x1, x2 ∈ X , there is a unique P ∈ P such
that x1, x2 ∈ P,

iii there is a set S ⊆ X , |S | = 4, with the property that for each
P ∈ P contains at most two point of S .
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Basic properties of FPP

Let (X ,P) be a finite projective plane. There is a value n ∈ N
such that

i each x ∈ X lies in exactly n + 1 lines,

ii each P ∈ P contains exactly n + 1 points,

iii |X | = n2 + n + 1,

iv |P| = n2 + n + 1.

There is a FPP of each order q that is a power of a prime. We
denote this FPP by FPP(q).
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Using FPP

ex(n,C4) = the maximum number of edges of a C4-free graph on n
vertices
Known: ex(n,C4) ∈ O(n3/2) (by counting K1,2; cherries)

Proposition

There are arbitrarily large C4-free graphs on n vertices with
Ω(n3/2) edges.

Proof.

Let (X ,P) be a projective plane of order p and consider its
incidence graph G = (V ,E ). Note that C4 ̸⊆ G . Moreover,

|V | = 2(p2 + p + 1),

|E | = (p2 + p + 1)(p + 1) ≥ (p2 + p + 1)3/2.

Thus, |E | ≥ c |V |3/2 for some fixed c ∈ R.
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Constructing FPP from a field

Let Fn be a finite field with n elements. We define (X ,P) of order
n as follows:

i We set X to be the lines of F3
n (subspaces of dimension 1),

i.e. vectors (x , y , z) ∈ F3
n \ {(0, 0, 0)} factorized by scalar

multiplication,

ii moreover, P is the set of planes (subspaces of dimension 2)
such that each P ∈ P is formed by the lines (members of X )
that are contained in the plane.

That is, if P is represented by the normal vector
(a, b, c) ∈ F3

n \ {(0, 0, 0)}, then P contains exactly those
vectors (x , y , z) for which

ax + by + cz = 0.
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Overview

• Using the magical properties of FPP, we obtain a graph Hq

with
• n = q2(q2 − q + 1) vertices,
• edges are a union of q3 + 1 edge-disjoint cliques of order q2,
• each copy of K4 in Hq has at least three vertices in one of

these cliques.

• We consider the random n-vertex graph H∗
q as a union of

complete bipartite subgraphs of the cliques of Hq (hence, H∗
q

is K4-free).

• There is an instance G ∗
q of H∗

q with at least 240q3 edges; using

the container method, it has at most (q/ log2 q)t independent
sets of size t = 230q log2 q.

• Thus, by sampling vertices with probability (log2 q)/q, we
obtain a graph with at least (q3 log2 q)/2 vertices and no
independent sets of size t, yielding r(4, t) ≥ ct3/ log4 t.
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The FPP magic – Hermitian unital

Consider the following subset of points of FPP(q2)

H = {(x .y .z) : xq+1 + yq+1 + zq+1 = 0}.

It satisfies the following:

i |H| = q3 + 1,

ii every line of FPP(q2) intersects H either in 1 (tangents) or
q + 1 points (secants).

Restricting FPP(q2) to the points of H and secants S of H yields
a Steiner (q + 1)-tuple system.

Moreover, the restriction does not contain the O’Nan
configuration.



Introduction Proof sketch Lower bound methodology

The FPP magic – the graph Hq

We define Hq as follows:

V (Hq) = S,
E (Hq) = {(S ,S ′) : there is x ∈ H, such that x ∈ S ∩ S ′}.

Then,

i |V (Hq)| = q2(q2 − q + 1),

ii there is a set C of q3 + 1 maximal cliques of order q2, every
two sharing exactly one vertex,

iii each vertex lies in exactly q + 1 cliques of C,
iv every copy of K4 in Hq contains at least three vertices in some

clique of C.
Moreover, for each X ⊆ V (Hq) of size 224q2, many edges of Hq[X ]
lie in many cliques.
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The random K4-free graph H∗
q

For each maximal clique C ∈ C of Hq, let (AC ,BC ) be a random
partition of V (C ) such that each v ∈ V (C ) belongs to AC , resp.
BC , with probability 1/2 (independently).

Then H∗
q is the random graph consisting of the union over all

maximal cliques C ∈ C of the complete bipartite subgraph with
parts AC and BC .

Theorem

There is a realization of G ∗
q of H∗

q such that for every set
X ⊆ V (G ∗

q ) of size at least 224q2,

e(G ∗
q [X ]) ≥ |X |2

256q
.
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The container method

Proposition

Let G be a graph on n vertices, and let r ,R ∈ N, and α ∈ [0, 1]
satisfy:

e−αrn ≤ R,

and, for every subset X ⊆ V (G ) of at least R, vertices,

2e(X ) ≥ α|X |2.

Then the number of independent sets of size t ≥ r in G is at most(
n

r

)(
R

t − r

)
.
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Randomly sampling from G ∗
q

• By applying the container method appropriately, we obtain
that G ∗

q has at most (q/ log2 q)t independent sets of size

t = 230q log2 q.

• Randomly sample a set V of vertices of G with probability
log2 q/q independently for each vertex.

• Then the expected number of independent sets of size t is at
most 1.

• It follows that there is a K4-free graph with

q3 log2 q

2
≥ c

t3

log4 t

vertices and no independent set of size t.
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Proof review

What was key in the proof?

To obtain the graph G ∗
q with the properties:

• K4-free,

• every sufficiently large set induces many edges.

Unsurprisingly.
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(n, d , λ)-graphs

We say that G is an (n, d , λ)-graph if

i |V (G )| = n,

ii G is d-regular,

iii the second largest eigenvalue (in the absolute value) is λ.
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(n, d , λ)-graphs are pseudorandom

Theorem (Expander mixing lemma)

Let G be an (n, d , λ)-graph and let X ⊆ V (G ). Then∣∣∣∣2e(X )− d

n
|X |2

∣∣∣∣ ≤ λ|X |.

The smaller value of λ, the better.
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The value λ cannot be too small

Theorem (Alon-Boppana)

Let d ≥ 1. If G is a d-regular graph, then

λ ≥ 2
√
d − 1.

In light of this theorem, we refer to an (n, d , λ)-graph with
λ ∈ O(

√
d) as a spectrally extremal graph.

They exist for arbitrarily large fixed d (Ramanujan graph, 1980’s),
but also for d depending on n.
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Ks-free graph cannot have d too large

Theorem (Sudakov, Szabo and Vu)

Let G be a Ks -free (n, d , λ)-graph. Then

d ∈ O
(
λ

1
s−1 n1−

1
s−1

)
.

If G is spectrally extremal, this gives

d ∈ O
(
n1−

1
2s−3

)
.

The best we know is d ∈ Θ(n1−
1

s−1 ).
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Application of Ks-free (n, d , λ)-graphs

Theorem (Mubayi, Verstaete)

If there exists a spectrally extremal Ks -free (n, d , λ)-graph with
d ∈ O(n1−1/(2s−3)), then

r(s, t) ∈ Ω

(
ts−1

(log t)2s−4

)
.

Recall that it is known

r(s, t) ≤ (1 + o(1))
ts−1

(log t)s−2
.
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Counting independent sets again

The previous theorem relies on the container method, which
implies:

Proposition

If G is an (n, d , λ)-graph, then the number of independent sets of
size t ≥ 2n(log n)2/d is at most(

4e2λ

log2 n

)t

.
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Counting independent sets again – better?

If there is C > 0 such that the number of independent sets of size
t ≥ C (2n log n)/d in G is at most(

Cλ

log n

)t

,

the previous theorem would give (conditionally) that

r(s, t) ∈ Ω

(
ts−1

(log t)s−2

)
.
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Thank you.
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Questions?
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