The Analytic Arc Cover Problem and its Applications to Contiguous Art Gallery, Polygon Separation, and Shape Carving

Authors: Eliot W. Robson, Jack Spalding and Da Wei Zhang

Doctoral Seminar

March 27th, 2025

T. Antić (KAM)

The Analytic Arc Cover Problem

• Art Gallery = simple polygon P

Guard = point in P

lacksquare Guard x sees a point $y\in P=$ segment $xy\subset P$

- Art Gallery = simple polygon P
- Guard = point in P
- lacksquare Guard x sees a point $y\in P=$ segment $xy\subset P$

- Art Gallery = simple polygon P
- Guard = point in P
- Guard x sees a point $y \in P = \text{segment } xy \subset P$

Question

Given an art gallery P with n vertices, how many guards are needed to guard the whole gallery?

T. Antić (KAM)

The Analytic Arc Cover Problem

T. Antić (KAM

The Analytic Arc Cover Problem

Answer:

Theorem (Chvátal)

Any art gallery P can be guarded by $\lfloor \frac{n}{3} \rfloor$ guards, and sometimes this number of guards is necessary.

T. Antić (KAM)

The Analytic Arc Cover Problem

ARTGALLERY

Input Art gallery P and an integer k.

Question Is there a set of k guards in P such that every $y \in P$ is visible by some guard.

Theorem (Aggarwal 1984)

ARTGALLERY is NP-hard

T. Antić (KAM)

BoundaryArtGallery

Input Art gallery P and an integer k.

Question Is there a set of k guards in P such that every point on the boundary of P is visible by some guard.

T. Antić (KAM)

The Analytic Arc Cover Problem

BOUNDARYARTGALLERY

Input Art gallery P and an integer k.

Question Is there a set of k guards in P such that every point on the boundary of P is visible by some guard.

Theorem (Lee and Lin 1986)

BOUNDARYARTGALLERY is NP-hard.

Question (Thomas C. Shermer)

Is the guarding of disjoint regions necessary for the hardness proofs of ARTGALLERY *and variations like* BOUNDARYARTGALLERY?

T. Antić (KAM)

The Analytic Arc Cover Problem

ContiguousArtGallery

Input Art gallery P and an integer k.

Question Is there a set of k contiguous paths on boundary of P, covering the entire boundary such that each path is fully visible from some point in P?

Contiguous Art Gallery problem

T. Antić (KAM)

The Analytic Arc Cover Problem

	PolygonSeparation
Input	Simple polygon P , a convex polygon Q such that P is contained in Q and a number k .
Question	Is there a polygon S with k vertices such that $P \subset S \subset Q$?

5. References.

No references on this topic seem to exist and no useful results could be found.

T. Antić (KAM)

The Analytic Arc Cover Problem

POLYGONSEPARATION

Input Simple polygon P, a convex polygon Q such that P is contained in Q and a number k.

Question Is there a polygon S with k vertices such that $P \subset S \subset Q$?

Theorem (Aggarwal et al. 1989)

POLYGONSEPARATION can be solved in $O(n \log n)$ time. Moreover, any minimal solution S is a convex polygon.

	SegmentSeparation
Input	Two sets of line segments A and B in \mathbf{R}^2 and a number k .
Question	Is there a convex polygon S on k vertices separating A from $B?$

T. Antić (KAM)

The Analytic Arc Cover Problem

\$\mathcal{I}\$ = set of half-open arcs covering \$S^1\$
Next generator for \$\mathcal{I}\$ = function \$g: S^1 \rightarrow S^1\$ s.t.

$$g(t) = \sup\{b | [a, b) \in I \land t \in [a, b)\}$$

T. Antić (KAM)

The Analytic Arc Cover Problem

Analytic Arc Cover problem

ANALYTICARCCOVER

- Input Set \mathcal{I} of arcs covering S^1 with next-generator gand an integer k.
- Question Is there an x such that

 $[x, g(x)) \cup [g(x), g(g(x))) \cup \dots \cup [g^{k-1}(x), g^k(x))$

covers S^1 ?

Analytic Arc Cover problem

Theorem

If g is a piecewise linear rational function for either the unit-interval or ray representations of S^1 , the ANALYTICARCCOVER problem can be solved in time polynomial in the size of the optimal solution k, the combined bit-complexity of the end points of the pieces and each linear rational function.

Application to Art Gallery Problem

Theorem

CONTIGUOUSARTGALLERY problem is in P.

T. Antić (KAM)

The Analytic Arc Cover Problem

Idea: Reduce to ANALYTICARCCOVER

- Circle is homeomorphic to P
- $\mathcal{I} = \mathsf{subpaths}$ of the boundary of P
- Next-generator *g* is then easily defined.
- We need to prove that g is a linear rational function.

Application to Segment Separation

Theorem

SEGMENTSEPARTION is in P.

T. Antić (KAM)

The Analytic Arc Cover Problem

Application to segment separation

Lemma

Let P be a convex polygon contained in another polygon Q, then there is a convex polygon $Q' \subset Q$ with at most as many vertices as Q, containing P.

Application to Segment Separation

Idea:

- Instead of separating segments, separate convex hull of the endpoints of the segments
- lacksquare map each possible cut to a point on S^1 via its normal vector
- Figure out how to represent next cut
- Make this function a linear rational function

Application to Segment Separation

Figure 12 A linear rational function for the next half-plane by its normal vector \hat{n}_2 from \hat{n}_1 , with p_1, p_2, s_1, s_2 all fixed. In particular, $z = s_1 + \frac{\hat{n}_1 \cdot (p_1 - s_1)}{\hat{n}_1 \cdot (e_2 - e_3)} (s_2 - s_1)$ and $\hat{n}_2 = ((p_2 - z)_y, -(p_2 - z)_x)$.

T. Antić (KAM)

The Analytic Arc Cover Problem

The End

T. Antić (KAM)

The Analytic Arc Cover Problem