Parametrized Inapproximability Hypothesis under ETH

Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, Kewen Wu

Presented by Matej Lieskovský

<ロト <四ト <注入 <注下 <注下 <

A glimpse of the destination

Results

- Proof of Parameterized Inapproximability Hypothesis under Exponential Time Hypothesis a gap-free assumption.
- A PCP-type theorem for parametrized complexity theory.

We now introduce the necessary terminology.

Introduction of Problems

3SAT

Given a boolean formula in CNF where each clause is limited to at most three literals, decide whether an assignment satisfying all clauses exists.

Example input: $(x \lor y) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z)$

2CSP

Given a set of variables, their domains and a set of constraints where each constraint is limited to at most two variables, decide whether an assignment satisfying all constraints exists. Example input: $x, y \in \{1, ..., 100\}$ x + y = 4 x - y = 2

Gap

A modification of a problem where we are promised that the fraction of satisfiable clauses/constraints is either 1 or at most $(1 - \varepsilon)$ for some $\varepsilon > 0$

Introduction - PCP theorem

Results

- Proof of PIH under ETH a gap-free assumption.
- A PCP-type theorem for parametrized complexity theory.

PCP theorem

- Polynomial time reduction from 3SAT to Gap-3SAT
- $NP = PCP[O(\log n), O(1)]$

伺 ト イヨ ト イヨト

Introduction - Parametrized Complexity Theory

Results

- Proof of PIH under ETH a gap-free assumption.
- A PCP-type theorem for parametrized complexity theory.

Parametrized Complexity Theory

- Every instance has a parameter k
- We assume $1 \le k \ll n$
- Time complexity $f(k) \cdot n^{O(1)}$ defines class FPT

Our target

Consider 2CSP parametrized by the number of variables k. It is known not to lie in FPT (assuming W[1] \neq FPT)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction - ETH and PIH

Results

- Proof of PIH under ETH a gap-free assumption.
- A PCP-type theorem for parametrized complexity theory.

Exponential Time Hypothesis

Solving 3SAT requires $2^{\Omega(n)}$ time.

Gap-ETH

Exponential time is also needed for Gap-3SAT.

Parametrized Inapproximability Hypothesis

No FPT algorithm can solve Gap-2CSP parametrized by number of variables.

< ロ > < 同 > < 三 > < 三 >

-EXACTCOVER

Variant of k-SETCOVER where the k sets selected are disjoint. Results prove inapproximability under a gap-free assumption.

Other

- Assuming ETH, no FPT algorithm for (k, ρ ⋅ k)-EXACTCOVER for any ρ ≥ 1.
- Assuming ETH, no FPT algorithm for $(k, \rho \cdot k)$ -DIRECTEDODDCYCLETRAVERSAL for some $\rho \in (1, 2)$.

伺 ト イヨ ト イヨト

Discussions

Previous results

- PIH was only known to hold under Gap-ETH.
- A weaker version was known to hold under $W[1] \neq FPT$.
- Several potential paths to proving PIH under ETH were proposed but unsuccessful.

Future directions

- Many parametrized hardness of approximation results can now be based on ETH.
- Further progress toward proving PIH from minimal assumption of W[1] ≠ FPT.

伺 ト イヨト イヨト

Overview

Results

- Proof of PIH under ETH a gap-free assumption.
- A PCP-type theorem for parametrized complexity theory.

We present an efficient reduction from 3SAT formulas to parametrized CSPs of k variables with a constant gap.

Outline

- Arithmetize 3SAT into an intermediate CSP with k variables and some alphabet size Σ₁.
- Encode an assignment (proof) using a locally testable and correctable code.
- Check that the input proof is (close to) an encoding of a satisfying assignment.

< ロ > < 同 > < 三 > < 三 >

Remaining work

Intermediate parametrized CSP

- Some runtime lower bound under ETH.
- Number of variables is some small k.
- Large alphabet size $|\Sigma_1|$

Error correcting code

- Used to encode a solution of the intermediate CSP.
- Allows a local check of satisfiability.
- Alphabet size polynomial in $|\Sigma_1|$.
- Codeword length arbitrary in k but independent of $|\Sigma_1|$.

Vectorization

We force Σ_1 to be a vector space \mathbb{F}^d where \mathbb{F} is a field of constant size. Thus we can view an assignment $\sigma \in \Sigma_1^k = (\mathbb{F}^d)^k$ as $(\mathbb{F}^k)^d$. We will use a code $C : \mathbb{F}^k \to \mathbb{F}^{k'}$ to make coding independent of the entire $\Sigma_1 = \mathbb{F}^d$.

This motivates the design of the intermediate CSP problem. We need:

- ETH-hardness.
- Alphabet is a vector space.
- Restricted constraints for efficient testing.

We call the result Vector-Valued CSPs, which have the following properties:

- We show a reduction from 3SAT.
- F has characteristic two.
- There are only two constraint types.

The bulk of the paper

The theorem

Assume ETH is true. No algorithm can decide $\frac{1}{9600}$ -Gap k-2CSP within runtime $f(k) \cdot n^{o(\sqrt{\log \log k})}$ for any computable function f.

Structure of the proof

- A detailed definition of Vector-Valued CSPs.
- A reduction from 3SAT to Vector-Valued CSPs.
- A reduction from Vector-Valued CSPs to Gap CSPs.

The last three sections

- The first reduction
- The second reduction
- Parallel PCPPs

► < Ξ ► <</p>

Thank you for your attention!

A closer look at the use of Vector-Valued CSPs follows, time permitting.

(E)

Formal definition of CSP

We focus on 2CSP exclusively.

A CSP instance $G = (V, E, \Sigma, \{\Pi_e\}_{e \in E}$ where

- V is the set of variables.
- *E* is the set of constraints. Each constraint $e = \{u_e, v_e\} \in E$ has arity 2 and is related to two distinct variables $u_e, v_e \in V$. The *constraint graph* is the undirected graph on vertices *V* and edges *E*. Note that we do allow parallel edges.
- Σ is the alphabet of each variable in V.
- $\{\Pi_e\}_{e \in E}$ is the set of constraint validity functions

Formal definition of Vector-Valued CSP

A CSP instance $G = (V, E, \Sigma, \{\Pi_e\}_{e \in E})$ is a VecCSP instance if the following additional properties hold:

- Σ = 𝔽^d is a *d*-dimensional vector space over a finite field 𝔽 with characteristic 2.
- For each e = {u, v} ∈ E where u = (u₁,..., u_d) and v = (v₁,..., v_d) the constraint validity function Π_e is either *Linear* or *Parallel*.
- Each variable is related to at most one parallel constraint.

Formal definition of the constraints

Linear constraint

There exists a matrix $M_e \in \mathbb{F}^{d \times d}$ such that

```
\Pi_e(u,v)=1\iff u=M_ev
```

In our application, M_e will always be a permutation matrix.

Parallel constraint

There exists a sub-constraint $\Pi_e^{sub} : \mathbb{F} \times \mathbb{F} \to \{0, 1\}$ and a subset of coordinates $Q_e \subset [d]$ such that $\Pi_e(u, v)$ checks Π_e^{sub} for every coordinate in Q_e , i.e.,

$$\Pi_e(u,v) = \bigwedge_{i \in Q_e} \Pi_e^{sub}(u_i,v_i)$$

From 3SAT to VecCSP

Step 1

Divide the clauses and variables into k parts each. Build a "vertex" for each part. Add consistency checks.

Step 2

Duplicate each vertex into several copies such that

- each vertex is related to at most one constraint
- the sub-constraints inside each constraint form a matching

Step 3

Rearrange the coordinates of each vertex to make the constraint Parallel. Add a cycle of Linear constraints on the copies of each vertex to ensure consistency.

伺 ト イヨト イヨト