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A glimpse of the destination

Results

Proof of Parameterized Inapproximability Hypothesis under
Exponential Time Hypothesis - a gap-free assumption.

A PCP-type theorem for parametrized complexity theory.

We now introduce the necessary terminology.

Guruswami, Lin, Ren, Sun, Wu — Lieskovský Parametrized Inapproximability Hypothesis under ETH



Introduction of Problems

3SAT

Given a boolean formula in CNF where each clause is limited to at
most three literals, decide whether an assignment satisfying all
clauses exists.
Example input: (x ∨ y) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)

2CSP

Given a set of variables, their domains and a set of constraints
where each constraint is limited to at most two variables,
decide whether an assignment satisfying all constraints exists.
Example input: x , y ∈ {1, . . . , 100} x + y = 4 x − y = 2

Gap

A modification of a problem where we are promised that
the fraction of satisfiable clauses/constraints is either 1
or at most (1− ε) for some ε > 0
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Introduction - PCP theorem

Results

Proof of PIH under ETH - a gap-free assumption.

A PCP-type theorem for parametrized complexity theory.

PCP theorem

Polynomial time reduction from 3SAT to Gap-3SAT

NP = PCP[O(log n),O(1)]

Guruswami, Lin, Ren, Sun, Wu — Lieskovský Parametrized Inapproximability Hypothesis under ETH



Introduction - Parametrized Complexity Theory

Results

Proof of PIH under ETH - a gap-free assumption.

A PCP-type theorem for parametrized complexity theory.

Parametrized Complexity Theory

Every instance has a parameter k

We assume 1 ≤ k ≪ n

Time complexity f (k) · nO(1) defines class FPT

Our target

Consider 2CSP parametrized by the number of variables k .
It is known not to lie in FPT (assuming W[1] ̸= FPT)
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Introduction - ETH and PIH

Results

Proof of PIH under ETH - a gap-free assumption.

A PCP-type theorem for parametrized complexity theory.

Exponential Time Hypothesis

Solving 3SAT requires 2Ω(n) time.

Gap-ETH

Exponential time is also needed for Gap-3SAT.

Parametrized Inapproximability Hypothesis

No FPT algorithm can solve Gap-2CSP parametrized by number of
variables.
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Applications

k-ExactCover

Variant of k-SetCover where the k sets selected are disjoint.
Results prove inapproximability under a gap-free assumption.

Other

Assuming ETH, no FPT algorithm for
(k , ρ · k)-ExactCover for any ρ ≥ 1.

Assuming ETH, no FPT algorithm for
(k , ρ · k)-DirectedOddCycleTraversal for some
ρ ∈ (1, 2).
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Discussions

Previous results

PIH was only known to hold under Gap-ETH.

A weaker version was known to hold under W[1] ̸= FPT.

Several potential paths to proving PIH under ETH were
proposed but unsuccessful.

Future directions

Many parametrized hardness of approximation results can now
be based on ETH.

Further progress toward proving PIH from minimal assumption
of W[1] ̸= FPT.
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Overview

Results

Proof of PIH under ETH - a gap-free assumption.

A PCP-type theorem for parametrized complexity theory.

We present an efficient reduction from 3SAT formulas to
parametrized CSPs of k variables with a constant gap.

Outline

Arithmetize 3SAT into an intermediate CSP with k variables
and some alphabet size Σ1.

Encode an assignment (proof) using a locally testable and
correctable code.

Check that the input proof is (close to) an encoding of a
satisfying assignment.
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Remaining work

Intermediate parametrized CSP

Some runtime lower bound under ETH.

Number of variables is some small k .

Large alphabet size |Σ1|

Error correcting code C

Used to encode a solution of the intermediate CSP.

Allows a local check of satisfiability.

Alphabet size polynomial in |Σ1|.
Codeword length arbitrary in k but independent of |Σ1|.
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Vectorization

We force Σ1 to be a vector space Fd where F is a field of constant
size. Thus we can view an assignment σ ∈ Σk

1 = (Fd)k as (Fk)d .
We will use a code C : Fk → Fk ′

to make coding independent of
the entire Σ1 = Fd .
This motivates the design of the intermediate CSP problem. We
need:

ETH-hardness.

Alphabet is a vector space.

Restricted constraints for efficient testing.

We call the result Vector-Valued CSPs, which have the following
properties:

We show a reduction from 3SAT.

F has characteristic two.

There are only two constraint types.
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The bulk of the paper

The theorem

Assume ETH is true. No algorithm can decide 1
9600 -Gap k-2CSP

within runtime f (k) · no(
√
log log k) for any computable function f .

Structure of the proof

A detailed definition of Vector-Valued CSPs.

A reduction from 3SAT to Vector-Valued CSPs.

A reduction from Vector-Valued CSPs to Gap CSPs.

The last three sections

The first reduction

The second reduction

Parallel PCPPs
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Thank you for your attention!

A closer look at the use of Vector-Valued CSPs follows, time
permitting.
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Formal definition of CSP

We focus on 2CSP exclusively.
A CSP instance G = (V ,E ,Σ, {Πe}e∈E where

V is the set of variables.

E is the set of constraints. Each constraint e = {ue , ve} ∈ E
has arity 2 and is related to two distinct variables ue , ve ∈ V .
The constraint graph is the undirected graph on vertices V
and edges E . Note that we do allow parallel edges.

Σ is the alphabet of each variable in V .

{Πe}e∈E is the set of constraint validity functions
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Formal definition of Vector-Valued CSP

A CSP instance G = (V ,E ,Σ, {Πe}e∈E ) is a VecCSP instance if
the following additional properties hold:

Σ = Fd is a d-dimensional vector space over a finite field F
with characteristic 2.

For each e = {u, v} ∈ E where u = (u1, . . . , ud) and
v = (v1, . . . , vd) the constraint validity function Πe is either
Linear or Parallel.

Each variable is related to at most one parallel constraint.
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Formal definition of the constraints

Linear constraint

There exists a matrix Me ∈ Fd×d such that

Πe(u, v) = 1 ⇐⇒ u = Mev

In our application, Me will always be a permutation matrix.

Parallel constraint

There exists a sub-constraint Πsub
e : F× F → {0, 1} and a subset

of coordinates Qe ⊂ [d ] such that Πe(u, v) checks Π
sub
e for every

coordinate in Qe , i.e.,

Πe(u, v) =
∧
i∈Qe

Πsub
e (ui , vi )
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From 3SAT to VecCSP

Step 1

Divide the clauses and variables into k parts each. Build a
“vertex” for each part. Add consistency checks.

Step 2

Duplicate each vertex into several copies such that

each vertex is related to at most one constraint

the sub-constraints inside each constraint form a matching

Step 3

Rearrange the coordinates of each vertex to make the constraint
Parallel. Add a cycle of Linear constraints on the copies of each
vertex to ensure consistency.
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