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A glimpse of the destination

@ Proof of Parameterized Inapproximability Hypothesis under
Exponential Time Hypothesis - a gap-free assumption.

@ A PCP-type theorem for parametrized complexity theory.

We now introduce the necessary terminology.
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Introduction of Problems

Given a boolean formula in CNF where each clause is limited to at
most three literals, decide whether an assignment satisfying all
clauses exists.

Example input: (x Vy) A (—xV -y V-z)A(xV -y Vz)

.

Given a set of variables, their domains and a set of constraints
where each constraint is limited to at most two variables,
decide whether an assignment satisfying all constraints exists.
Example input: x,y € {1,...,100} x+y=4 x—y=2

A modification of a problem where we are promised that
the fraction of satisfiable clauses/constraints is either 1
or at most (1 — ¢) for some £ > 0
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Introduction - PCP theorem

@ Proof of PIH under ETH - a gap-free assumption.

@ A PCP-type theorem for parametrized complexity theory.

PCP theorem
@ Polynomial time reduction from 3SAT to Gap-3SAT
e NP = PCP[O(logn), O(1)]
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Introduction - Parametrized Complexity Theory

@ Proof of PIH under ETH - a gap-free assumption.
@ A PCP-type theorem for parametrized complexity theory.

Parametrized Complexity Theory
@ Every instance has a parameter k
@ Weassume 1 < k< n
o Time complexity f(k) - n®(1) defines class FPT

.

Our target

Consider 2CSP parametrized by the number of variables k.
It is known not to lie in FPT (assuming W[1] # FPT)

.
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Introduction - ETH and PIH

@ Proof of PIH under ETH - a gap-free assumption.

@ A PCP-type theorem for parametrized complexity theory.

Exponential Time Hypothesis
Solving 3SAT requires 24" time.

Exponential time is also needed for Gap-3SAT.

Parametrized Inapproximability Hypothesis

No FPT algorithm can solve Gap-2CSP parametrized by number of
variables.
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Applications

Variant of k-SETCOVER where the k sets selected are disjoint.
Results prove inapproximability under a gap-free assumption.

@ Assuming ETH, no FPT algorithm for
(k,p - k)-ExACTCOVER for any p > 1.
@ Assuming ETH, no FPT algorithm for
(k, p - k)-DIRECTEDODDCYCLETRAVERSAL for some

p € (1,2).
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Discussions

Previous results

@ PIH was only known to hold under Gap-ETH.
@ A weaker version was known to hold under W[1] # FPT.

@ Several potential paths to proving PIH under ETH were
proposed but unsuccessful.

Future directions

@ Many parametrized hardness of approximation results can now
be based on ETH.

@ Further progress toward proving PIH from minimal assumption
of W[1] # FPT.

\,
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@ Proof of PIH under ETH - a gap-free assumption.

@ A PCP-type theorem for parametrized complexity theory.

We present an efficient reduction from 3SAT formulas to
parametrized CSPs of k variables with a constant gap.

@ Arithmetize 3SAT into an intermediate CSP with k variables
and some alphabet size ¥ ;.

@ Encode an assignment (proof) using a locally testable and
correctable code.

@ Check that the input proof is (close to) an encoding of a
satisfying assignment.
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Intermediate parametrized CSP

@ Some runtime lower bound under ETH.
@ Number of variables is some small k.

o Large alphabet size |¥4|

Error correcting code

@ Used to encode a solution of the intermediate CSP.

@ Allows a local check of satisfiability.

@ Alphabet size polynomial in |X].

o Codeword length arbitrary in k but independent of |X4].
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We force Y1 to be a vector space F¢ where [ is a field of constant
size. Thus we can view an assignment o € ¥ = (F9)k as (k)9
We will use a code C : F¥ — F¥' to make coding independent of
the entire ¥; = FY.

This motivates the design of the intermediate CSP problem. We
need:

@ ETH-hardness.
@ Alphabet is a vector space.
@ Restricted constraints for efficient testing.

We call the result Vector-Valued CSPs, which have the following
properties:

@ We show a reduction from 3SAT.
@ [F has characteristic two.

@ There are only two constraint types.

Guruswami, Lin, Ren, Sun, Wu — Lieskovsky Parametrized Inapproximability Hypothesis under ETH



The bulk of the paper

The theorem

Assume ETH is true. No algorithm can decide ﬁ—Gap k-2CSP
within runtime £ (k) - n°(V1°g1°g k) for any computable function f.

Structure of the proof
@ A detailed definition of Vector-Valued CSPs.
@ A reduction from 3SAT to Vector-Valued CSPs.
@ A reduction from Vector-Valued CSPs to Gap CSPs.

The last three sections

@ The first reduction
@ The second reduction
o Parallel PCPPs
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Thank you for your attention!

A closer look at the use of Vector-Valued CSPs follows, time
permitting.
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Formal definition of CSP

We focus on 2CSP exclusively.
A CSP instance G = (V, E, X, {[¢}ece where
@ V is the set of variables.
@ E is the set of constraints. Each constraint e = {ue,ve} € E
has arity 2 and is related to two distinct variables ue, ve € V.
The constraint graph is the undirected graph on vertices V
and edges E. Note that we do allow parallel edges.
@ X is the alphabet of each variable in V.
o {[Mc}eck is the set of constraint validity functions
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Formal definition of Vector-Valued CSP

A CSP instance G = (V,E, %, {lNc}ece) is @ VecCSP instance if
the following additional properties hold:

o ¥ =T is a d-dimensional vector space over a finite field F
with characteristic 2.

e For each e = {u,v} € E where u = (u1,...,u4) and
v =(v1,...,Vy) the constraint validity function [l is either
Linear or Parallel.

@ Each variable is related to at most one parallel constraint.
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Formal definition of the constraints

There exists a matrix M, € F9%9 such that

Me(u,v) =1 <= u= Mv

In our application, M, will always be a permutation matrix.

\,

Parallel constraint

There exists a sub-constraint M“? : F x F — {0,1} and a subset
of coordinates Q. C [d] such that M(u, v) checks M“? for every
coordinate in Q., i.e.,

Me(u,v) = /\ N&(ui, v)

I€Qe
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From 3SAT to VecCSP

Divide the clauses and variables into k parts each. Build a
“vertex” for each part. Add consistency checks.

Duplicate each vertex into several copies such that

@ each vertex is related to at most one constraint
@ the sub-constraints inside each constraint form a matching
o
Rearrange the coordinates of each vertex to make the constraint

Parallel. Add a cycle of Linear constraints on the copies of each
vertex to ensure consistency.
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