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For a positive integer n, we use [n] to denote the set { 1, 2, . . . , n }. We use log to denote the logarithm
with base 2. Throughout the paper, we use O(·),Θ(·),Ω(·) to hide absolute constants that do not depend
on any other parameter.

CSP. In this paper, we only focus on constraint satisfaction problems (CSPs) of arity two. Formally, a
CSP instance G is a quadruple (V,E,Σ, {Πe}e∈E), where:

• V is for the set of variables.

• E is for the set of constraints. Each constraint e = {ue, ve } ∈ E has arity 2 and is related to two
distinct variables ue, ve ∈ V .

The constraint graph is the undirected graph on vertices V and edges E. Note that we allow multiple
constraints between a same pair of variables and thus the constraint graph may have parallel edges.

• Σ is for the alphabet of each variable in V . For convenience, we sometimes have different alphabets
for different variables and we will view them as a subset of a grand alphabet Σ with some natural
embedding.

• {Πe}e∈E is the set of constraint validity functions. Given a constraint e ∈ E, the validity function
Πe(·, ·) : Σ× Σ → { 0, 1 } checks whether the constraint e between ue and ve is satisfied.

We use |G| = (|V |+ |E|) · |Σ| to denote the size of a CSP instance G.

Assignment and Satisfiability Value. An assignment is a function σ : V → Σ that assigns each variable
a value in the alphabet. The satisfiability value for an assignment σ, denoted by val(G, σ), is the fraction of
constraints satisfied by σ, i.e., val(G, σ) = 1

|E|
∑

e∈E Πe(σ(ue), σ(ve)). The satisfiability value for G, denoted

by val(G), is the maximum satisfiability value among all assignments, i.e., val(G) = maxσ : V→Σ val(G, σ).
We say that an assignment σ is a solution to a CSP instance G if val(G, σ) = 1, and G is satisfiable iff G
has a solution.

When the context is clear, we omt σ in the description of a constraint, i.e., Πe(ue, ve) stands for
Π(σ(ue), σ(ve)).

Parameterization and Fixed Parameter Tractability. For an instance G, the parameterization refers
to attaching the parameter k := |V | (the size of the variable set) to G and treating the input as a (G, k)
pair. We think of k as a growing parameter that is much smaller than the instance size n := |G|. A promise
problem Lyes ∪ Lno is fixed parameter tractable (FPT) if it has an algorithm which, for every instance G,
decides whether G ∈ Lyes or G ∈ Lno in f(k) · nO(1) time for some computable function f .
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FPT Reduction. An FPT reduction from Lyes∪Lno to L′
yes∪L′

no is an algorithm A which, on every input
G = (V,E,Σ, {Πe}e∈E) outputs another instance G′ = (V ′, E′,Σ′, {Π′

e}e∈E′) such that:

• Completeness. If G ∈ Lyes, then G′ ∈ L′
yes.

• Soundness. If G ∈ Lno, then G′ ∈ L′
no.

• FPT. There exist universal computable functions f and g such that |V ′| ≤ g(|V |) and the runtime of
A is bounded by f(|V |) · |G|O(1).

ε-Gap k-CSP. We mainly focus on the gap version of the parameterized CSP problem. Formally, an ε-Gap
k-CSP problem needs to decide whether a given CSP instance (G, |V |) with |V | = k satisfies val(G) = 1 or
val(G) < 1− ε. The exact version is equivalent to 0-gap k-CSP.

Parameterized Inapproximability Hypothesis (PIH). Parameterized Inapproximability Hypothesis
(PIH), first formulated by Lokshtanov, Ramanujan, Saurabh, and Zehavi 1, is a central conjecture in the
parameterized complexity theory, which, if true, serves as a parameterized counterpart of the celebrated PCP
theorem. Below, we present a slight reformulation of PIH, asserting fixed parameter intractability (rather
than W [1]-hardness specifically) of gap CSP.

Hypothesis 1 (PIH). For an absolute constant 0 < ε < 1, no FPT algorithm can decide ε-Gap k-CSP.

Exponential Time Hypothesis (ETH). Exponential Time Hypothesis (ETH), first proposed by Im-
pagliazzo and Paturi, is a famous strengthening of the P ̸= NP hypothesis and provides a foundation for
fine-grained understandings in the modern complexity theory.

Definition 1 (3SAT). A 3CNF formula φ on n Boolean variables is a conjunction of m clauses, where each
clause is a disjunction of three literals and each literal is a variable or its negation. The goal of the 3SAT
problem is to decide whether φ is satisfiable or not.

The original ETH is stated in the general 3SAT problem. In this paper, for convenience, we use the
following variant due to the sparsification lemma and Tovy’s reduction, which gives 3SAT additional struc-
ture.

Hypothesis 2 (ETH). No algorithm can decide 3SAT within runtime 2o(n), where additionally each variable
is contained in at most four clauses and each clause contains exactly three distinct variables.2

1Prior to their work, this hypothesis was already informally stated by quite a few researchers as a natural formulation of the
PCP theorem in parameterized complexity.

2We say a variable x is contained in a clause C if the literal x or ¬x appears in C.
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