Big line or big convex polygon handout

Jan Soukup

March 2025

1 Definitions and cups-caps theorems

Given an *n*-element point set P in the plane, we say that P is in *convex position* if P is the vertex set of a convex *n*-gon. We say that P is in *general position* if no three members of P are collinear.

Definition 1. Let $ES_{\ell}(n)$ be the minimum N such that every N-point set in the plane contains either ℓ collinear points or n points in convex position.

Let X be a k-element point set in the plane with distinct x-coordinates. We say that X forms a k-cup (k-cap) if X is in convex position and its convex hull is bounded above (below) by a single edge.

Definition 2. Write $f_{\ell}(m,n)$ for the minimum N such that every N-point set in the plane contains either ℓ collinear members, an m-cup or an n-cap.

Theorem 1. There is an absolute constant c > 1 such that, for $m, n, \ell \geq 3$,

$$f_{\ell}(m,n) \le c(\min\{m-1,n-1\}+\ell) \cdot \binom{m+n-4}{n-2}$$

Proof. Using the following lemma

Lemma 2 (Beck 83'). There is an absolute constant $\varepsilon > 0$ such that every t-element point set in the plane contains either ε t collinear points or determines at least $\varepsilon {t \choose 2}$ distinct lines.

Theorem 3.

$$f_{\ell}(m,n) > \frac{\ell-1}{2} \binom{m+n-4}{n-2} - \frac{\ell-3}{2} \binom{m+n-6}{n-3}$$

Proof. Proof by construction.

Theorem 4. There is a constant c_1 such that the following holds. Let P be an N-point planar set with no ℓ points on a line and $N > c_1 \ell \cdot 2^{32k}$. Then there is a k-element subset $X \subset P$ that is either a k-cup or a k-cap such that, for the regions T_1, \ldots, T_{k-1} from the support (definition by picture) of X, the point sets $P_i = P \cap T_i$ satisfy $|P_i| \ge N/2^{32k}$. In particular, every (k-1)-tuple obtained by selecting one point from each P_i , $i = 1, \ldots, k-1$, is in convex position.

Proof. Proof by the following lemma.

Lemma 5 (Chan 12', Matousek 92'). Let P be a set of N points in the plane. Then, for any integer r > 0, there are disjoint subsets P_1, \ldots, P_r of P and disjoint cells $\Delta_1, \ldots, \Delta_r$ in \mathbb{R}^2 , with $P_i \subset \Delta_i$, such that $|P_i| \geq N/(8r)$ and every line in the plane crosses at most $O(\sqrt{r})$ cells Δ_i .

2 Main results

Theorem 6. For each $\ell, n \ge 3$, $ES_{\ell}(n) \ge (3\ell - 1) \cdot 2^{n-5} + 1$.

Proof. Proof by construction.

Theorem 7. There exists C > 0 such that, for each $\ell, n \ge 3$, $ES_{\ell}(n) \le \ell^2 \cdot 2^{n+C\sqrt{n \log n}}$.

Proof. Proof by Theorem 4 and by modification of Theorem 1 explained below.

We will need the following more general version of Theorem 1. Let K be a convex set in the plane. Then we say that the point set P avoids K if the line generated by any two points in P is disjoint from K. We say that K and P are separated if there is a line that separates K and $\operatorname{conv}(P)$. Suppose now that K is a convex set in the plane, P is a finite point set that avoids K and K and P are separated. Then, given a subset $X \subset P$, we say that X is an *inner-cap* with respect to K if, for each point $x \in X$, there is a line that separates x from $(X \setminus \{x\}) \cup K$. Similarly, we say that $X \subset P$ is an *outer-cup* with respect to K if, for each point $x \in X$, there is a line that separates $x \cup K$ from $X \setminus \{x\}$.

Lemma 8. There is an absolute constant c > 0 such that the following holds. Let K be a convex set in the plane and let P be a finite point set in the plane that avoids K. If K and P are separated and

$$|P| \ge c(\min\{m-1, n-1\} + \ell) \cdot \binom{m+n-4}{n-2},$$

then P contains either ℓ collinear points, an outer-cup with respect to K of size m or an inner-cap with respect to K of size n.