OPTIMIZING THE CGMS UPPER BOUND ON RAMSEY NUMBERS

Authors: PARTH GUPTA, NDIAMÉ NDIAYE, SERGEY NORIN, AND LOUIS WEI Presented by: JELENA GLIŠIĆ

Doctoral Seminar 03/04/2025

1 DEFINITIONS

Definition 1. The Ramsey number R(k, l) is the smallest positive integer N such that in any red-blue coloring of the edges of the complete graph on N vertices there exists either a complete subgraph on k vertices with all edges colored red (a red K_k) or a complete subgraph on l vertices with all edges colored blue (a blue K_l). We call R(k, k) the diagonal Ramsey number.

Definition 2. Let X, Y be two non-empty disjoint subsets of vertices of a complete graph with edges colored red and blue. We say that (X,Y) is a candidate. We say that a candidate (X,Y) is (k,l,t)-good if $X \cup Y$ contains a red K_k or X contains a blue K_t or Y contains a blue K_l .

Definition 3. The density of (X, Y) is $d(X, Y) = \frac{e_R(X,Y)}{|X||Y|}$, where $e_R(X,Y)$ denotes the number of red edges with one endpoint in X and the other in Y. For some density p, we denote by $f_p(X,Y) = e_R(X,Y) - p|X||Y|$ the excess amount of red edges between X and Y.

2 PREVIOUS RESULTS

Theorem 1. [CGMS23] There exists a constant $\varepsilon > 0$ such that $R(k,k) \le (4-\varepsilon)^k$. **Theorem 2.** [CGMS23] $R(k,l) \le e^{-l/400+o(k)} {k+l \choose l}$.

3 RESULTS FROM PAPER

Theorem 3. [GNNW24] For all positive integers $k \ge l$,

$$R(k,l) \le 4(k+l) \left(\frac{(\sqrt{5}+1)(k+2l)}{4l}\right)^l \left(\frac{k+2l}{k}\right)^{k/2}.$$

Theorem 4. [GNNW24] For all positive integers $k \ge l$,

$$R(k,l) \le e^{G(l/k)k + o(k)} \binom{k+l}{l},$$

where $G(\lambda) = (-0.25\lambda + 0.03\lambda^2 + 0.08\lambda^3)e^{-\lambda}$.

Corollary 5. It holds that

$$R(k,k) \le (3.7992\dots)^{k+o(k)}$$

and

$$R(k,l) \le e^{-l/20 + o(k)} \binom{k+l}{l}.$$

References

- [CGMS23] Marcelo Campos, Simon Griffiths, Robert Morris, and Julian Sahasrabudhe. An exponential improvement for diagonal Ramsey, 2023.
- [GNNW24] Parth Gupta, Ndiame Ndiaye, Sergey Norin, and Louis Wei. Optimizing the CGMS upper bound on Ramsey numbers, 2024.