The asymptotics of r(4,t)

Sam Mattheus, Jacques Verstaete

Presented by Tomáš Hons

Definition 1. Let r(s,t) be the smallest value such that any graph on at least r(s,t) vertices contains either a clique of size s or an independent set of size t.

Theorem 1. As $t \to \infty$,

$$r(4,t) \in \Omega\left(\frac{t^3}{(\log t)^4}\right).$$

Proof overview. • Using the magical properties of FPP, we obtain a graph H_q with

- $-n = q^2(q^2 q + 1)$ vertices,
- edges are a union of $q^3 + 1$ edge-disjoint cliques of order q^2 ,

- each copy of K_4 in H_q has at least three vertices in one of these cliques.

- We consider the random *n*-vertex graph H_q^* as a union of complete bipartite subgraphs of the cliques of H_q (hence, H_q^* is K_4 -free).
- There is an instance G_q^* of H_q^* with at least $2^{40}q^3$ edges; using the container method, it has at most $(q/\log^2 q)^t$ independent sets of size $t = 2^{30}q\log^2 q$.
- Thus, by sampling vertices with probability $(\log^2 q)/q$, we obtain a graph with at least $(q^3 \log^2 q)/2$ vertices and no independent sets of size t, yielding $r(4,t) \ge ct^3/\log^4 t$.

Theorem 2. For q a power of a prime, there is a graph H_q with the following properties:

(i)
$$|V(H_q)| = q^2(q^2 - q + 1),$$

- (ii) there is a set C of $q^3 + 1$ maximal cliques of order q^2 , every two sharing exactly one vertex,
- (iii) each vertex lies in exactly q + 1 cliques of C,

(iv) every copy of K_4 in H_q contains at least three vertices in some clique of C.

Moreover, for each $X \subseteq V(H_q)$ of size $2^{24}q^2$, many edges of $H_q[X]$ lie in many cliques.

Theorem 3. There is a realization of G_q^* of H_q^* such that for every set $X \subseteq V(G_q^*)$ of size at least $2^{24}q^2$,

$$e(G_q^*[X]) \ge \frac{|X|^2}{256q}.$$

- Proof of Theorem 1. By applying the container method appropriately, we obtain that G_q^* has at most $(q/\log^2 q)^t$ independent sets of size $t = 2^{30}q\log^2 q$.
 - Randomly sample a set V of vertices of G with probability $\log^2 q/q$ independently for each vertex.
 - Then the expected number of independent sets of size t is at most 1.
 - It follows that there is a K_4 -free graph with

$$\frac{q^3 \log^2 q}{2} \ge c \frac{t^3}{\log^4 t}$$

vertices and no independent set of size t.

Definition 2. We say that G is an (n, d, λ) -graph if

(i) |V(G)| = n,

- (ii) G is d-regular,
- (iii) the second largest eigenvalue (in the absolute value) is λ .

Theorem 4 (Expander mixing lemma). Let G be an (n, d, λ) -graph and let $X \subseteq V(G)$. Then

$$\left|2e(X) - \frac{d}{n}|X|^2\right| \le \lambda|X|.$$

If (n, d, λ) -graph satisfies $\lambda = O(\sqrt{d})$ (best possible), we call it spectrally extremal graph.

Theorem 5 (Sudakov, Szabo and Vu). Let G be a K_s -free (n, d, λ) -graph. Then

$$d \in O\left(\lambda^{\frac{1}{s-1}} n^{1-\frac{1}{s-1}}\right).$$

If G is spectrally extremal, this gives

$$d \in O\left(n^{1-\frac{1}{2s-3}}\right).$$

Theorem 6 (Mubayi, Verstaete). If there exists a spectrally extremal K_s -free (n, d, λ) -graph with $d \in O(n^{1-1/(2s-3)})$, then

$$r(s,t) \in \Omega\left(\frac{t^{s-1}}{(\log t)^{2s-4}}\right).$$

It is known

$$r(s,t) \le (1+o(1))\frac{t^{s-1}}{(\log t)^{s-2}}$$

by Ajtai, Komlós, Szemerédi.

Proposition 7. If G is an (n, d, λ) -graph, then the number of independent sets of size $t \ge 2n(\log n)^2/d$ is at most

$$\left(\frac{4e^2\lambda}{\log^2 n}\right)^t.$$

Conjecture 1. There is C > 0 such that the number of independent sets of size $t \ge C(2n\log n)/d$ in G is at most

$$\left(\frac{C\lambda}{\log n}\right)^t.$$

If Conjecture 1 true, then Theorem 6 improves to give (conditionally) the asymptotically matching lower bound

$$r(s,t) \in \Omega\left(\frac{t^{s-1}}{(\log t)^{s-2}}\right).$$