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Definition 1. Let r(s, t) be the smallest value such that any graph on at least r(s, t) vertices contains either a clique
of size s or an independent set of size t.

Theorem 1. As t → ∞,

r(4, t) ∈ Ω
(

t3

(log t)4

)
.

Proof overview. • Using the magical properties of FPP, we obtain a graph Hq with

– n = q2(q2 − q + 1) vertices,
– edges are a union of q3 + 1 edge-disjoint cliques of order q2,
– each copy of K4 in Hq has at least three vertices in one of these cliques.

• We consider the random n-vertex graph H∗
q as a union of complete bipartite subgraphs of the cliques of Hq

(hence, H∗
q is K4-free).

• There is an instance G∗
q of H∗

q with at least 240q3 edges; using the container method, it has at most (q/ log2 q)t

independent sets of size t = 230q log2 q.

• Thus, by sampling vertices with probability (log2 q)/q, we obtain a graph with at least (q3 log2 q)/2 vertices
and no independent sets of size t, yielding r(4, t) ≥ ct3/ log4 t.

Theorem 2. For q a power of a prime, there is a graph Hq with the following properties:

(i) |V (Hq)| = q2(q2 − q + 1),

(ii) there is a set C of q3 + 1 maximal cliques of order q2, every two sharing exactly one vertex,

(iii) each vertex lies in exactly q + 1 cliques of C,

(iv) every copy of K4 in Hq contains at least three vertices in some clique of C.

Moreover, for each X ⊆ V (Hq) of size 224q2, many edges of Hq[X] lie in many cliques.

Theorem 3. There is a realization of G∗
q of H∗

q such that for every set X ⊆ V (G∗
q) of size at least 224q2,

e(G∗
q [X]) ≥ |X|2

256q
.

Proof of Theorem 1. • By applying the container method appropriately, we obtain that G∗
q has at most (q/ log2 q)t

independent sets of size t = 230q log2 q.

• Randomly sample a set V of vertices of G with probability log2 q/q independently for each vertex.

• Then the expected number of independent sets of size t is at most 1.

• It follows that there is a K4-free graph with

q3 log2 q

2 ≥ c
t3

log4 t

vertices and no independent set of size t.
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Definition 2. We say that G is an (n, d, λ)-graph if

(i) |V (G)| = n,

(ii) G is d-regular,

(iii) the second largest eigenvalue (in the absolute value) is λ.

Theorem 4 (Expander mixing lemma). Let G be an (n, d, λ)-graph and let X ⊆ V (G). Then∣∣∣∣2e(X) − d

n
|X|2

∣∣∣∣ ≤ λ|X|.

If (n, d, λ)-graph satisfies λ = O(
√

d) (best possible), we call it spectrally extremal graph.

Theorem 5 (Sudakov, Szabo and Vu). Let G be a Ks-free (n, d, λ)-graph. Then

d ∈ O
(

λ
1

s−1 n1− 1
s−1

)
.

If G is spectrally extremal, this gives
d ∈ O

(
n1− 1

2s−3

)
.

Theorem 6 (Mubayi, Verstaete). If there exists a spectrally extremal Ks-free (n, d, λ)-graph with d ∈ O(n1−1/(2s−3)),
then

r(s, t) ∈ Ω
(

ts−1

(log t)2s−4

)
.

It is known
r(s, t) ≤ (1 + o(1)) ts−1

(log t)s−2

by Ajtai, Komlós, Szemerédi.

Proposition 7. If G is an (n, d, λ)-graph, then the number of independent sets of size t ≥ 2n(log n)2/d is at most(
4e2λ

log2 n

)t

.

Conjecture 1. There is C > 0 such that the number of independent sets of size t ≥ C(2n log n)/d in G is at most(
Cλ

log n

)t

.

If Conjecture 1 true, then Theorem 6 improves to give (conditionally) the asymptotically matching lower bound

r(s, t) ∈ Ω
(

ts−1

(log t)s−2

)
.
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