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Theorem 1 (Win-win lower bounds).
At least one of the following lower bounds holds:

1. ENP does not have Valiant series-parallel circuits of size O(n).

2. There is an ε > 0 such that Boolean Inner Product on n-bit vectors does not have 2εn-size ETHR◦ETHR
circuits. Moreover, there is an explicit monotone function f ∈ coNP that requires monotone circuits
of size 2Ω(n/ logn).

Hypothesis 1 (Strong Exponential Time Hypothesis (SETH), Impagliazzo & Paturi’01).
For any ε > 0, there exists a k such that k-SAT cannot be solved in time O(2(1−ε)n).

Hypothesis 2 (Nondeterministic Strong Exponential Time Hypothesis (NSETH), Carmosino et al.’16).
For any ε > 0, there exists a k such that k-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n).

Definition 1 (Orthogonal Vectors problem (OV)).
Given two sets A,B ⊆ {0, 1}d with |A| = |B| = n, decide whether there exist a ∈ A and b ∈ B such that∑d

i=1 aibi = 0.

Conjecture 1 (Orthogonal Vectors conjecture (OVC)).
For every ε > 0 there exists a constant c ≥ 1 such that the Orthogonal Vectors problem cannot be solved in
time n2−ε on instances with d = c log n.
(Note that the obvious algorithm runs in time O(n2d).)

Theorem 2 (SETH implies OVC, Williams’04).
There exists an algorithm that, given a CNF formula φ with n variables and m clauses outputs two sets
Aφ, Bφ ⊆ {0, 1}m such that |Aφ| = |Bφ| = 2n/2 and φ is satisfiable if and only if Aφ, Bφ form a YES instance
of OV. The algorithm runs in time O(mn · 2n/2).
In other words, faster algorithms for OV imply faster algorithms for SAT (and breaking SETH).

Theorem 3 (The first lower bound, Carmosino et al.’16 + Jahanjou, Miles & Viola’15).
If NSETH is false, then there exists a function family in ENP that requires Valiant series-parallel circuits of
size ω(n).

Part 1: matrix decompositions (Williams)

Theorem 4 (The second lower bound, part 1).
If the disjointness matrix for d-bit vectors has weak equality rank at most f(d), where f(d) is a subexpo-
nential function, then ∀c ≥ 1, ε > 0, OV on n vectors in c log n dimensions can be solved in time n1+ε

deterministically.

Definition 2 (Equality matrix, weak equality rank).
Amatrix A ∈ {0, 1}m×n is an equality matrix if there exist u ∈ Nm, v ∈ Nn such that A[i, j] = 1 ⇔ u[i] = v[j].
The weak equality rank of a matrix A is the smallest number of equality matrices M1, . . . ,Mr with constants
α1, . . . , αr such that A[i, j] = 0 ⇒

∑r
k=1 αkMk[i, j] = 0 and A[i, j] = 1 ⇒

∑r
k=1 αkMk[i, j] ̸= 0.

Definition 3 (Exact threshold function).
An exact threshold function f : {0, 1}n → {0, 1} is defined by weights α1, . . . , αn, t ∈ R such that f(x1, . . . , xn) =
1 ⇔

∑
αixi = t.
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Theorem 5 (Circuits and weak equality rank, Williams’18).
For a function f : {0, 1}2n → {0, 1} and its descriptor matrix Mf ∈ {0, 1}n×n such that Mf [x, y] = f(xy),
we define ¬Mf [x, y] = 1−Mf [x, y]. Then, if f has an ETHR ◦ ETHR circuit of size s, then ¬Mf has weak
equality rank at most s+ 1.

Definition 4 (Satisfying pairs problem).

Let M be a family of matrices Md ∈ {0, 1}2d×2d . The M-Satisfying-Pairs problem is defined as follows: on
input d ≥ 1 with two sets L,R ⊆ [2d], are there i ∈ L, j ∈ R such that Md[i, j] = 1?

Theorem 6 (Algorithms for Satisfying pairs).

Let M be a family of matrices Md ∈ {0, 1}2d×2d . Suppose that Md has a weak equality rank at most r with
an explicit rank decomposition. Then, we can solve M-Satisfying-Pairs with |L| = |R| = n in dimension d
in randomized time r ·n ·poly(d, logn) and space n ·poly(d, logn). We can also make it deterministic in time
r2 · n · poly(d, logn).

Theorem 7 (Uniformization).
Suppose that for some fixed k, r, the disjointness matrix on k-bit strings has weak equality rank r. Then for
all d ≥ k, the disjointness matrix on d-bit strings has weak equality rank at most O(rd/k) with an explicit
rank decomposition.

Part 2: Monotone circuits (Chukhin, Kulikov, Mihajlin, Smirnova)

Theorem 8 (The second lower bound, part 2).
If NSETH is true, then there exists an explicit monotone Boolean function family in coNP with monotone
circuit size 2Ω(n/ logn).

Definition 5 (Monotone functions and circuits).
A function f : {0, 1}n → {0, 1} is monotone if changing a zero in the input to one never decreases the output
value.
A Boolean circuit is monotone if it only uses AND and OR gates.

Lemma 1.
Let φ be a CNF formula. Then φ is unsatisfiable if and only if (Aφ, Bφ) from the Williams reduction can
be separated by a monotone function.

More generally, a pair A,B ⊆ {0, 1}d has no orthogonal pair if and only if there exists a monotone
function f : {0, 1}d → {0, 1} such that f [A] = {0}, f [B] = 1, where B = {b : b ∈ B}.

Lemma 2.
There exists a parameter ℓ ∈ O(n log n) and an injective encoding e that encodes all k-CNF formulas with
n variables and at most βn clauses into ℓ-bit strings with exactly ℓ/2 ones and both encoding and decoding
can be done in time polynomial in n.

Bonuses

Theorem 9 (Sparsification lemma, Impagliazzo, Paturi & Zane’01).
For any k ≥ 3 and ε > 0, there exists α = α(k, ε) and an algorithm that, given a k-CNF formula φ over
n variables, outputs t ≤ 2εn formulas φ1, . . . , φt in k-CNF such that all formulas have at most n variables
and at most αn clauses, annd φ is satisfiable iff at least one of φi is satisfiable. The algorithm runs in time
O(poly(n) · 2εn).
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