Ryan Williams:

The Orthogonal Vectors Conjecture and Non-Uniform Circuit Lower Bounds

Nikolai Chukhin, Alexander S. Kulikov, Ivan Mihajlin, Arina Smirnova: Deriving Nonuniform Lower Bounds from Uniform Nondeterministic Lower Bounds

presented by Petr Chmel

Theorem 1 (Win-win lower bounds).

At least one of the following lower bounds holds:

- 1. E^{NP} does not have Valiant series-parallel circuits of size $\mathcal{O}(n)$.
- 2. There is an $\varepsilon > 0$ such that Boolean Inner Product on *n*-bit vectors does not have $2^{\varepsilon n}$ -size ETHR \circ ETHR circuits. Moreover, there is an explicit monotone function $f \in \text{coNP}$ that requires monotone circuits of size $2^{\Omega(n/\log n)}$.

Hypothesis 1 (Strong Exponential Time Hypothesis (SETH), Impagliazzo & Paturi'01). For any $\varepsilon > 0$, there exists a k such that k-SAT cannot be solved in time $\mathcal{O}(2^{(1-\varepsilon)n})$.

Hypothesis 2 (Nondeterministic Strong Exponential Time Hypothesis (NSETH), Carmosino et al.'16). For any $\varepsilon > 0$, there exists a k such that k-SAT cannot be solved in *co-nondeterministic* time $\mathcal{O}(2^{(1-\varepsilon)n})$.

Definition 1 (Orthogonal Vectors problem (OV)). Given two sets $A, B \subseteq \{0, 1\}^d$ with |A| = |B| = n, decide whether there exist $a \in A$ and $b \in B$ such that $\sum_{i=1}^d a_i b_i = 0$.

Conjecture 1 (Orthogonal Vectors conjecture (OVC)). For every $\varepsilon > 0$ there exists a constant $c \ge 1$ such that the Orthogonal Vectors problem cannot be solved in time $n^{2-\varepsilon}$ on instances with $d = c \log n$. (Note that the obvious algorithm runs in time $\mathcal{O}(n^2d)$.)

Theorem 2 (SETH implies OVC, Williams'04).

There exists an algorithm that, given a CNF formula φ with n variables and m clauses outputs two sets $A_{\varphi}, B_{\varphi} \subseteq \{0, 1\}^m$ such that $|A_{\varphi}| = |B_{\varphi}| = 2^{n/2}$ and φ is satisfiable if and only if A_{φ}, B_{φ} form a YES instance of OV. The algorithm runs in time $\mathcal{O}(mn \cdot 2^{n/2})$.

In other words, faster algorithms for OV imply faster algorithms for SAT (and breaking SETH).

Theorem 3 (The first lower bound, Carmosino et al.'16 + Jahanjou, Miles & Viola'15). If NSETH is false, then there exists a function family in E^{NP} that requires Valiant series-parallel circuits of size $\omega(n)$.

Part 1: matrix decompositions (Williams)

Theorem 4 (The second lower bound, part 1).

If the disjointness matrix for d-bit vectors has weak equality rank at most f(d), where f(d) is a subexponential function, then $\forall c \geq 1, \varepsilon > 0$, OV on n vectors in $c \log n$ dimensions can be solved in time $n^{1+\varepsilon}$ deterministically.

Definition 2 (Equality matrix, weak equality rank).

A matrix $A \in \{0, 1\}^{m \times n}$ is an equality matrix if there exist $u \in \mathbb{N}^m$, $v \in \mathbb{N}^n$ such that $A[i, j] = 1 \Leftrightarrow u[i] = v[j]$. The weak equality rank of a matrix A is the smallest number of equality matrices M_1, \ldots, M_r with constants $\alpha_1, \ldots, \alpha_r$ such that $A[i, j] = 0 \Rightarrow \sum_{k=1}^r \alpha_k M_k[i, j] = 0$ and $A[i, j] = 1 \Rightarrow \sum_{k=1}^r \alpha_k M_k[i, j] \neq 0$.

Definition 3 (Exact threshold function).

An exact threshold function $f : \{0, 1\}^n \to \{0, 1\}$ is defined by weights $\alpha_1, \ldots, \alpha_n, t \in \mathbb{R}$ such that $f(x_1, \ldots, x_n) = 1 \Leftrightarrow \sum \alpha_i x_i = t$.

Theorem 5 (Circuits and weak equality rank, Williams'18).

For a function $f : \{0,1\}^{2n} \to \{0,1\}$ and its descriptor matrix $M_f \in \{0,1\}^{n \times n}$ such that $M_f[x,y] = f(xy)$, we define $\neg M_f[x,y] = 1 - M_f[x,y]$. Then, if f has an ETHR \circ ETHR circuit of size s, then $\neg M_f$ has weak equality rank at most s + 1.

Definition 4 (Satisfying pairs problem).

Let \mathcal{M} be a family of matrices $M_d \in \{0, 1\}^{2^d \times 2^d}$. The \mathcal{M} -Satisfying-Pairs problem is defined as follows: on input $d \ge 1$ with two sets $L, R \subseteq [2^d]$, are there $i \in L, j \in R$ such that $M_d[i, j] = 1$?

Theorem 6 (Algorithms for Satisfying pairs).

Let \mathcal{M} be a family of matrices $M_d \in \{0, 1\}^{2^d \times 2^d}$. Suppose that M_d has a weak equality rank at most r with an explicit rank decomposition. Then, we can solve \mathcal{M} -Satisfying-Pairs with |L| = |R| = n in dimension din randomized time $r \cdot n \cdot \text{poly}(d, \log n)$ and space $n \cdot \text{poly}(d, \log n)$. We can also make it deterministic in time $r^2 \cdot n \cdot \text{poly}(d, \log n)$.

Theorem 7 (Uniformization).

Suppose that for some fixed k, r, the disjointness matrix on k-bit strings has weak equality rank r. Then for all $d \ge k$, the disjointness matrix on d-bit strings has weak equality rank at most $\mathcal{O}(r^{d/k})$ with an explicit rank decomposition.

Part 2: Monotone circuits (Chukhin, Kulikov, Mihajlin, Smirnova)

Theorem 8 (The second lower bound, part 2).

If NSETH is true, then there exists an explicit monotone Boolean function family in coNP with monotone circuit size $2^{\Omega(n/\log n)}$.

Definition 5 (Monotone functions and circuits).

A function $f : \{0,1\}^n \to \{0,1\}$ is monotone if changing a zero in the input to one never decreases the output value.

A Boolean circuit is monotone if it only uses AND and OR gates.

Lemma 1.

Let φ be a CNF formula. Then φ is *unsatisfiable* if and only if $(A_{\varphi}, \overline{B_{\varphi}})$ from the Williams reduction can be separated by a monotone function.

More generally, a pair $A, B \subseteq \{0,1\}^d$ has no orthogonal pair if and only if there exists a monotone function $f: \{0,1\}^d \to \{0,1\}$ such that $f[A] = \{0\}, f[\overline{B}] = 1$, where $\overline{B} = \{\overline{b}: b \in B\}$.

Lemma 2.

There exists a parameter $\ell \in \mathcal{O}(n \log n)$ and an injective encoding e that encodes all k-CNF formulas with n variables and at most βn clauses into ℓ -bit strings with exactly $\ell/2$ ones and both encoding and decoding can be done in time polynomial in n.

Bonuses

Theorem 9 (Sparsification lemma, Impagliazzo, Paturi & Zane'01).

For any $k \geq 3$ and $\varepsilon > 0$, there exists $\alpha = \alpha(k, \varepsilon)$ and an algorithm that, given a k-CNF formula φ over n variables, outputs $t \leq 2^{\varepsilon n}$ formulas $\varphi_1, \ldots, \varphi_t$ in k-CNF such that all formulas have at most n variables and at most αn clauses, and φ is satisfiable iff at least one of φ_i is satisfiable. The algorithm runs in time $\mathcal{O}(\operatorname{poly}(n) \cdot 2^{\varepsilon n})$.