Forbidden acyclic patterns in 0-1 matrices

Seth Pettie & Gábor Tardos

Gaurav Kucheriya

- *A* , *P*: 0-1 matrices
- A avoids P iff P is neither a *submatrix* of A
 - nor obtained from a submatrix by 1→0 switches

- *A* , *P*: 0-1 matrices
- A avoids P iff P is neither a submatrix of A
 - nor obtained from a submatrix by 1→0 switches

• Example:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

- *A* , *P*: 0-1 matrices
- A avoids P iff P is neither a submatrix of A
 - nor obtained from a submatrix by 1→0 switches

• Example:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

- *A* , *P*: 0-1 matrices
- A avoids P iff P is neither a *submatrix* of A
 - nor obtained from a submatrix by 1→0 switches

• Example:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

A does not avoid P = A contains P

- *A* , *P*: 0-1 matrices
- A avoids P iff P is neither a submatrix of A
 - nor obtained from a submatrix by 1→0 switches

• Example:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

A does not avoid P = A contains P

• Extremal function: $Ex(P, n) = maximum weight of an n \times n 0-1 matrix avoiding P$

adjacency matrices ~ bipartite graphs

contains ~ contains as a subgraph

 $\operatorname{Ex}(P,n) = \operatorname{ex}(G,n)$ Turán-type extremal graph theory

adjacency matrices \sim bipartite graphs with vertex order contains \sim contains as a subgraph with correct order $\text{Ex}(P,n) = \frac{\text{ex}(G,n)}{\text{Turán-type extremal graph theory for vertex ordered bipartite graphs}$

adjacency matrices \sim bipartite graphs with vertex order contains \sim contains as a subgraph with correct order $\operatorname{Ex}(P,n)$ = $\operatorname{ex}(G,n)$ Turán-type extremal graph theory for vertex ordered bipartite graphs

Also: Direct connection to generalized Davenport-Schinzel theory

adjacency matrices \sim bipartite graphs with vertex order contains \sim contains as a subgraph with correct order $\operatorname{Ex}(P,n) = \operatorname{ex}(G,n) = \operatorname{ex}(G,n)$ Turán-type extremal graph theory for vertex ordered bipartite graphs

Also: Direct connection to generalized Davenport-Schinzel theory

Large number of <u>applications</u> in combinatorial geometry and other combinatorics, also in analysis of algorithms

• Füredi 1990:
$$\operatorname{Ex} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \Theta(n \log n) + \operatorname{appl.}$$
 in comb. geo.

- Füredi 1990: $\operatorname{Ex} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \Theta(n \log n) + \operatorname{appl.}$ in comb. geo.
- Füredi and Hajnal 1992: lots of results and many conjectures, e.g.: P is a bipartite adjacency matrix of (unordered) G, then: Conj.1. $Ex(P,n) \approx ex(G,n)$ i.e., ordering hardly matters

- Füredi 1990: $\operatorname{Ex} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \Theta(n \log n) + \operatorname{appl.}$ in comb. geo.
- Füredi and Hajnal 1992: lots of results and many conjectures, e.g.: P is a bipartite adjacency matrix of (unordered) G, then: Conj.1. $Ex(P,n) \approx ex(G,n)$ i.e., ordering hardly matters
- Pach and T. 2006:

Conj.1. is very false

- Füredi 1990: $\operatorname{Ex} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \Theta(n \log n) + \operatorname{appl.}$ in comb. geo.
- Füredi and Hajnal 1992: lots of results and many conjectures, e.g.: P is a bipartite adjacency matrix of (unordered) G, then: Conj.1. $Ex(P,n) \approx ex(G,n)$ i.e., ordering hardly matters
- Pach and T. 2006:

Conj.1. is very false

Ex $(P_k, n) = \Omega(n^{4/3})$ adjacency $\exp(C_{2k}, n) = O\left(n^{1+\frac{1}{k}}\right)$

Can the gap be larger?

- Füredi 1990: $\operatorname{Ex} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \Theta(n \log n) + \operatorname{appl.}$ in comb. geo.
- Füredi and Hajnal 1992: lots of results and many conjectures, e.g.: P is a bipartite adjacency matrix of (unordered) G, then: Conj.1. $Ex(P,n) \approx ex(G,n)$ i.e., ordering hardly matters
- Pach and T. 2006:

Conj.1. is very false

Ex $(P_k, n) = \Omega(n^{4/3})$ Bipartite adjacency $\operatorname{ex}(C_{2k}, n) = O\left(n^{1+\frac{1}{k}}\right)$

Can the gap be larger?

• Janzer, Janzer, Magnan, Methuku 2024: Every row of P has $\leq k$ 1's

à la Füredi's result on bipartite graphs with each degree on one side $\leq k$

$$\Rightarrow \operatorname{Ex}(P_k, n) = O(n^{2 - \frac{1}{k} + o(1)})$$

- Füredi 1990: $\operatorname{Ex} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \Theta(n \log n) + \operatorname{appl.}$ in comb. geo.
- Füredi and Hajnal 1992: lots of results and many conjectures, e.g.: P is a bipartite adjacency matrix of (unordered) G, then: Conj.1. $Ex(P,n) \approx ex(G,n)$ i.e., ordering hardly matters

- Füredi 1990: $\operatorname{Ex} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \Theta(n \log n) + \operatorname{appl.}$ in comb. geo.
- Füredi and Hajnal 1992: lots of results and many conjectures, e.g.: P is a bipartite adjacency matrix of (unordered) G, then:

Conj.1. $Ex(P, n) \approx ex(G, n)$ i.e., ordering hardly matters

Conj.2. $Ex(P, n) = O(n \log n)$ if G is a tree (= P acyclic)

- Füredi 1990: $\operatorname{Ex} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \Theta(n \log n) + \operatorname{appl.}$ in comb. geo.
- Füredi and Hajnal 1992: lots of results and many conjectures, e.g.: P is a bipartite adjacency matrix of (unordered) G, then:

 Conj. 1. Ev(P, m) \approx ev(G, m) is a ordering bardly matters.

Conj.1.
$$Ex(P,n) \approx ex(G,n)$$
 i.e., ordering hardly matters Conj.2. $Ex(P,n) = O(n \log n)$ if G is a tree (= P acyclic)

• Pach and T. 2006:

Conj.2'. $Ex(P, n) = n \log^{c_P} n$ for acyclic P

- Füredi 1990: $\operatorname{Ex} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $n = \Theta(n \log n) + \operatorname{appl.}$ in comb. geo.
- Füredi and Hajnal 1992: lots of results and many conjectures, e.g.: P is a bipartite adjacency matrix of (unordered) G, then:

Conj.1.
$$Ex(P,n) \approx ex(G,n)$$
 i.e., ordering hardly matters Conj.2. $Ex(P,n) = O(n \log n)$ if G is a tree (= P acyclic)

Pach and T. 2006:

Conj.2'. $Ex(P, n) = n \log^{c_P} n$ for acyclic P Conj. 2' holds if P is built by simple rules e.g. adding first/last rows/column with a single 1

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \bigvee S = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \bigvee S' = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \bigvee Smallest examples$$

• Füredi and Hajnal 1992: Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic

• Pach and T. 2006: Conj.2'. $\operatorname{Ex}(P,n) = n \log^{c_P} n$ for acyclic P Conj. 2' holds if P is built by some rules

- Füredi and Hajnal 1992:
- Pach and T. 2006:

- Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic
- Conj.2'. $Ex(P, n) = n \log^{c_P} n$ for acyclic P Conj. 2' holds if P is built by some rules
- Korándi, T., Tomon, Weidert 2019:

Stacking:

Conj. 2" $Ex(P, n) = n^{1+o(1)}$ for acyclic P Conj 2" holds if P is built from rows by stacking

• Füredi and Hajnal 1992:

Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic

• Pach and T. 2006:

- Conj.2'. $Ex(P, n) = n \log^{c_P} n$ for acyclic P Conj. 2' holds if P is built by some rules
- Korándi, T., Tomon, Weidert 2019:

Conj. 2" $Ex(P,n) = n^{1+o(1)}$ for acyclic P Conj 2" holds if P is built from rows by stacking

$$S = \begin{pmatrix} 1 & -1 & \\ 1 &$$

• Füredi and Hajnal 1992:

Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic

• Pach and T. 2006:

- Conj.2'. $Ex(P, n) = n \log^{c_P} n$ for acyclic P Conj. 2' holds if P is built by some rules
- Korándi, T., Tomon, Weidert 2019:

Conj. 2" $\operatorname{Ex}(P,n) = n^{1+o(1)}$ for acyclic P Conj 2" holds if P is built from rows by stacking

stacking
$$S = \begin{pmatrix} 1 & -1 & \\ 1 & -$$

- Füredi and Hajnal 1992: Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic
- Pach and T. 2006: Conj.2'. $\operatorname{Ex}(P,n) = n \log^{c_P} n$ for acyclic P Conj. 2' holds if P is built by some rules
- Korándi, T., Tomon, Weidert 2019:

Conj. 2" $\operatorname{Ex}(P,n) = n^{1+o(1)}$ for acyclic P Conj 2" holds if P is built from rows by stacking

Not known:

 $\exists \varepsilon > 0 \ \forall \ \operatorname{acyclic} P \ \operatorname{Ex}(P, n) = O(n^{2-\varepsilon})$

• Füredi and Hajnal 1992: Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic

• Pach and T. 2006: Conj.2'. $\operatorname{Ex}(P,n) = n \log^{c_P} n$ for acyclic P Conj. 2" $\operatorname{Ex}(P,n) = n^{1+o(1)}$ for acyclic P

• Füredi and Hajnal 1992: Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic

• Pach and T. 2006: Conj.2'. $\operatorname{Ex}(P,n) = n \log^{c_P} n$ for acyclic P Conj. 2" $\operatorname{Ex}(P,n) = n^{1+o(1)}$ for acyclic P

• Pettie 2011: Conj.2. is slightly false:

 $\exists P \text{ acyclic: } \mathsf{Ex}(P, n) = \Omega(n \log n \log \log n)$

- Füredi and Hajnal 1992: Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic
- Pach and T. 2006: Conj.2'. $\operatorname{Ex}(P,n) = n \log^{c_P} n$ for acyclic P Conj. 2" $\operatorname{Ex}(P,n) = n^{1+o(1)}$ for acyclic P
- Pettie 2011: Conj.2. is slightly false: $\exists P \text{ acyclic: } \operatorname{Ex}(P,n) = \Omega(n \log n \log \log n)$
- Park and Shi 2013:

 $\exists P$ acyclic: $Ex(P, n) = \Omega(n \log n \log \log n \log \log \log n)$

- Füredi and Hajnal 1992: Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic
- Pach and T. 2006: Conj.2'. $\operatorname{Ex}(P,n) = n \log^{c_P} n$ for acyclic P Conj. 2" $\operatorname{Ex}(P,n) = n^{1+o(1)}$ for acyclic P
- Pettie 2011: Conj.2. is slightly false: $\exists P \text{ acyclic: } \operatorname{Ex}(P,n) = \Omega(n \log n \log \log n)$
- Park and Shi 2013:

 $\exists P$ acyclic: $Ex(P, n) = \Omega(n \log n \log \log n \log \log \log n)$

• Pettie, T., 2024: $\forall c \exists P \text{ acyclic: } \mathsf{Ex}(P, n) = \Omega(n \log^c n)$

Conj 2 really false

- Füredi and Hajnal 1992: Conj.2. $Ex(P, n) = O(n \log n)$ if P acyclic
- Pach and T. 2006: Conj.2'. $\operatorname{Ex}(P,n) = n \log^{c_P} n$ for acyclic P Conj. 2" $\operatorname{Ex}(P,n) = n^{1+o(1)}$ for acyclic P
- Pettie 2011: Conj.2. is slightly false: $\exists P \text{ acyclic: } \operatorname{Ex}(P,n) = \Omega(n \log n \log \log n)$
- Park and Shi 2013:

$$\exists P$$
acyclic: $\operatorname{Ex}(P, n) = \Omega(n \log n \log \log n \log \log \log \log n)$

- Pettie, T., 2024: $\forall c \exists P \text{ acyclic: } \mathsf{Ex}(P, n) = \Omega(n \log^c n)$
- Pettie, T., 2025: $Ex(S, n) = n2^{\Theta(\sqrt{\log n})}$

$$\mathsf{Ex}(S',n) = n2^{\Omega(\sqrt{\log n})}$$

Conj 2' false!

> upper bound for pattern S tight!

Conj 2

really false

$$P = \begin{pmatrix} 1 - 1 \\ 1 - 1 \end{pmatrix}$$

Füredi, 1990: $Ex(P, n) = \Theta(n \log n)$

$$P = \begin{pmatrix} 1 - 1 \\ 1 - 1 \end{pmatrix}$$

Füredi, 1990: $Ex(P, n) = \Theta(n \log n)$

Construction of a 0-1 matrix avoiding *P*:

rows and columns: $\{0,1\}^m$, ordered lexicographically

1 entry in row r, column $c \Leftrightarrow r$ and c differ in a single coordinate i $r_i = 0, \ c_i = 1$

$$P = \begin{pmatrix} 1 - 1 \\ 1 - 1 \end{pmatrix}$$

Füredi, 1990: $Ex(P, n) = \Theta(n \log n)$

Construction of a 0-1 matrix avoiding *P*:

rows and columns: $\{0,1\}^m$, ordered lexicographically

1 entry in row r, column $c \Leftrightarrow r$ and c differ in a single coordinate i $r_i = 0, \ c_i = 1$

$$n = 2^m$$
 rows / columns $m2^{m-1} = \frac{1}{2}n \log n$ 1 entries

$$P = \begin{pmatrix} 1 - 1 \\ 1 - 1 \end{pmatrix}$$

Füredi, 1990: $Ex(P, n) = \Theta(n \log n)$

Construction of a 0-1 matrix avoiding *P*:

rows and columns: $\{0,1\}^m$, ordered lexicographically

1 entry in row r, column $c \Leftrightarrow r$ and c differ in a single coordinate i $r_i = 0, \ c_i = 1$

$$n = 2^m$$
 rows / columns
$$m2^{m-1} = \frac{1}{2}n \log n \text{ 1 entries}$$

To increase weight, we need to allow r and s differ in more positions

That may lead to large all-1 submatrix

⇒ contains every pattern

$$P = \begin{pmatrix} 1 - 1 \\ 1 - 1 \end{pmatrix}$$

Füredi, 1990: $Ex(P, n) = \Theta(n \log n)$

Construction of a 0-1 matrix avoiding *P*:

rows and columns: $\{0,1\}^m$, ordered lexicographically

1 entry in row r, column $c \Leftrightarrow r$ and c differ in a single coordinate i $r_i = 0, \ c_i = 1$

$$n = 2^m$$
 rows / columns
$$m2^{m-1} = \frac{1}{2}n \log n \text{ 1 entries}$$

To increase weight, we need to allow r and s differ in more positions

That may lead to large all-1 submatrix ⇒ contains every pattern

Pettie, T 2024: r and s differ in O(1) positions 2025: unbounded # of positions

$$S = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$
 Pettie, T. 2025: $\operatorname{Ex}(S, n) = n2^{\Theta(\sqrt{\log n})}$

$$S = \begin{pmatrix} 1 & -1 \\ 1 & -1 \\ 1 & -1 \end{pmatrix}$$

Pettie, T. 2025:
$$Ex(S, n) = n2^{\Theta(\sqrt{\log n})}$$

Construction of a 0-1 matrix avoiding S:

```
rows: [m] \times [m]^b columns: [m]^b \times \{0,1\}^b ordered lexicographically 1 entry in row (s,r), column (c,i) \iff r-c=si
```

$$S = \begin{pmatrix} 1 & -1 & \\ 1 & -1 & \\ 1 & -1 \end{pmatrix}$$

Pettie, T. 2025:
$$Ex(S, n) = n2^{\Theta(\sqrt{\log n})}$$

Construction of a 0-1 matrix avoiding S:

```
rows: [m] \times [m]^b columns: [m]^b \times \{0,1\}^b ordered lexicographically 1 entry in row (s,r), column (c,i) \iff r-c=si
```

Column knows where the change is Row knows how big the change is

$$S = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

Pettie, T. 2025:
$$Ex(S, n) = n2^{\Theta(\sqrt{\log n})}$$

Construction of a 0-1 matrix avoiding S:

rows: $[m] \times [m]^b$ columns: $[m]^b \times \{0,1\}^b$ ordered lexicographically 1 entry in row (s,r), column $(c,i) \iff r-c=si$

Column knows where the change is Row knows how big the change is

$$n=m^{b+1}$$
 rows / $(2m)^b$ columns - choose $m=2^b$, $n=2^{b^2+b}$ $\approx \frac{m}{b}n \approx n2^{\Theta(\sqrt{\log n})}$ 1 entries \checkmark

rows: $[m] \times [m]^b$ columns: $[m]^b \times \{0,1\}^b$ ordered lexicographically

1 entry in row (s, r), column $(c, i) \iff r - c = si$

```
rows: [m] \times [m]^b columns: [m]^b \times \{0,1\}^b ordered lexicographically
```

1 entry in row (s, r), column $(c, i) \iff r - c = si$

$$(c,i)$$
 (c',i')
 $|$ $|$ $c < c'$, first non-0 of $c' - c$ is s
 $(s,r) - 1 - - 1$

(s', r')- 1

rows: $[m] \times [m]^b$ columns: $[m]^b \times \{0,1\}^b$ ordered lexicographically

1 entry in row (s, r), column $(c, i) \iff r - c = si$

```
rows: [m] \times [m]^b columns: [m]^b \times \{0,1\}^b
                                           ordered lexicographically
       1 entry in row (s, r), column (c, i) \iff r - c = si
               (c,i) (c',i')
                                            c < c', first non-0 of c' - c is s
                                            s < s'
       (s', r')- 1
ASSUME S contained
```

```
rows: [m] \times [m]^b columns: [m]^b \times \{0,1\}^b ordered lexicographically
      1 entry in row (s, r), column (c, i) \iff r - c = si
              (c,i) (c',i')
                                          c < c', first non-0 of c' - c is s
                                          s < s'
      (s', r')- 1
                                                 s < s' < s''
ASSUME
S contained
                                        First non-0 of x = c'' - c is s
                             First non-0 of y = c''' - c is s'
                                        First non-0 of z = c''' - c' is s''
```

```
rows: [m] \times [m]^b columns: [m]^b \times \{0,1\}^b ordered lexicographically
       1 entry in row (s, r), column (c, i) \iff r - c = si
                 (c,i) (c',i')
                                                c < c', first non-0 of c' - c is s
                                                s < s'
       (s', r')- 1
                                                         s < s' < s''
ASSUME
S contained
      S - 1 - 1
S' - 1 - 1
S'' - 1 - 1
First non-0 of x = c - c is s'
S'' - 1 - 1
First non-0 of z = c''' - c' is s'
                                                                                        x, z \leq y
                                                                                       x + z \ge y
                                              First non-0 of z = c''' - c' is s''
```

rows:
$$[m] \times [m]^b$$

columns: $[m]^b \times \{0,1\}^b$

(c,i) (c',i')

$$[m]^b \times \{0,1\}^b$$

ordered lexicographically

1 entry in row (s, r), column $(c, i) \iff r - c = si$

$$\Leftrightarrow r - c = si$$

$$(s,r)$$
 - 1 $-$ 1

(s', r')- 1

c < c', first non-0 of c' - c is s

First non-0 of x = c'' - c is s

First non-0 of
$$y = c''' - c$$
 is s'

First non-0 of
$$z = c''' - c'$$
 is s''

Open problems for acyclic patterns P

- Conjecture 2": $Ex(n, P) = n^{1+o(1)}$ for all acyclic P
- Prove this for certain acyclic patterns, e.g.:

- Prove a weaker version for all acyclic P, e.g.: $Ex(n, P) = O(n^{1.5})$
- Characterize P with $\mathsf{Ex}(n,P) = O(n)$ For connected patterns, see Füredi, Kostochka, Mubayi, and Verstraete No conjecture in general, but nice conjecture for light patterns.
- What extremal functions show up? E.g., can it be strictly between $\Theta(n\alpha(n))$ and $\Theta(n\log n)$? Yes, for pairs of patterns.
- Lot more about non-acyclic patterns, like $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$