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connection to extremal graph theory

adjacency matrices   ∼  bipar@te graphs
       with vertex order
contains   ∼  contains as a subgraph

Ex(#, %)   =  ex ', %
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connec3on to extremal graph theory

adjacency matrices   ∼  bipartite graphs
       with vertex order
contains   ∼  contains as a subgraph
       with correct order
Ex(#, %)   =  ex ', %
      Turán-type extremal graph theory 
      for vertex ordered bipartite graphs

Also: Direct connection to   generalized Davenport-Schinzel theory

Large number of applications in combinatorial geometry and other 
combinatorics, also in analysis of algorithms
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1 	 1
Füredi, 1990: Ex !, ( = Θ(( log ()

Construction:

/ = (0!"), 0!" = 11	 if	 4 − 6 = 2# , 8 ∈ ℕ
0	 otherwise

log ( diagonals, each with weight ≈ (
total weight ≈ ( log (
Avoids !

Goal: more diagonals, avoids some larger acyclic pattern
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To increase weight, we need to allow
 , and - differ in more positions 

That may lead to large all-1 submatrix
⇒ contains every pattern
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Open problems for acyclic pa7erns "
• Conjecture 2’’: Ex (, ! = (&()(&) for all acyclic !
• Prove this for certain acyclic patterns, e.g.:
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• Prove a weaker version for all acyclic !, e.g.: Ex (, ! = G((&..)
• Characterize ! with Ex (, ! = G (

For connected patterns, see Füredi, Kostochka, Mubayi, and Verstraete
No conjecture in general, but nice conjecture for light patterns.
• What extremal functions show up?

E.g., can it be strictly between Θ nα ( 	and	Θ(( log ()?
Yes, for pairs of patterns.

• Lot more about non-acyclic patterns, like
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