The GGM Function Family is Weakly One-Way

Aloni Cohen and Saleet Klein

May 2025

Definition (Weak One-Way Function). A function

$$f:\{0,1\}^* \ \to \ \{0,1\}^*$$

is called weakly one-way if it satisfies both of the following:

- 1. (Efficiency) There is a deterministic polynomial-time algorithm that on input x outputs f(x).
- 2. (Inversion Hardness) There exists a polynomial $p(\cdot)$, such that for every probabilistic polynomial-time adversary A and for all sufficiently large $n \in \mathbb{N}$,

$$\Pr_{x \leftarrow \{0,1\}^n} \left[A(1^n, f(x)) \in f^{-1}(f(x)) \right] < 1 - \frac{1}{p(n)}.$$

Here the probability is over the uniform choice of $x \in \{0,1\}^n$ and the internal randomness of A.

Definition (Pseudo-random Generator). An efficiently computable function

$$G: \{0,1\}^n \longrightarrow \{0,1\}^{2n}$$

is called a (length-doubling) pseudorandom generator (PRG) if the distribution $G(U_n)$ is computationally indistinguishable from the uniform distribution U_{2n} . In other words, for every probabilistic polynomial-time distinguisher D, there exists a negligible function $negl(\cdot)$ such that

$$\left| \Pr[D(G(U_n)) = 1] - \Pr[D(U_{2n}) = 1] \right| \le negl(n),$$

where the probabilities are taken over the choice of the uniform seeds and the internal randomness of D.

Theorem. Let

$$\{f_s: \{0,1\}^n \longrightarrow \{0,1\}^n\}_{s\in\{0,1\}^n}$$

be the length-preserving GGM function ensemble built from a pseudorandom generator G. Then for every constant $\varepsilon > 0$, GGM func. ensemble is a $(1 - 1/n^{2+\varepsilon})$ -weakly one-way collection of functions.

Proposition (Input Switching Proposition). For every constant $\varepsilon > 0$ and sufficiently large $n \in \mathbb{N}$,

$$\mathsf{Adv}_A\big(D_{\mathsf{owf}}\big) \ > \ 1 - \frac{1}{n^{2+\varepsilon}} \implies \mathsf{Adv}_A\big(D_{\mathsf{rand}}\big) \ > \ \frac{1}{\mathrm{poly}(n)}. \tag{12}$$

Claim. For every $k \in \{0, \ldots, n-1\}$,

- 1. $D_{owf} \approx_c D_0^k$,
- 2. $D_1^k \approx_c D_{mix}$
- 3. $D_{mix} \approx_c D_{rand}$.

Claim. Let D_{owf} , D_0^k , D_1^k , D_{mix} , and D_{rand} be defined as above. For every constant $\varepsilon' > 0$ and every $n \in \mathbb{N}$, at least one of the following holds:

1. There exists $k^* \in \{0, 1, \dots, n-1\}$ such that

$$SD(D_0^{k^*}, D_1^{k^*}) > 1 - \frac{1}{n^{2+\varepsilon}},$$

2.

$$SD(D_{owf}, D_{rand}) < \frac{2}{n^{\varepsilon'/2}}.$$

Lemma (Distinguishing Lemma). Let G be a pseudorandom generator for the corresponding GGM ensemble. For all PPT algorithms A and polynomials $\alpha(n)$, there exists a PPT distinguisher D such that for all $n \in \mathbb{N}$,

$$\mathsf{Adv}_A\big(U_n \times U_n\big) \; \geq \; \frac{1}{\alpha(n)} \implies \big| \mathrm{Pr}\big[D\big(G(U_n)\big) = 1\big] - \mathrm{Pr}\big[D(U_{2n}) = 1\big] \big| \; \geq \; \Big(\frac{1}{4 \, \alpha(n)}\Big)^5 \, - \, negl(n).$$