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Motivation and Background

Problem 1

Given two convex polygons P and Q in the plane, with n and m
edges respectively, find a vector in t € R? that maximizes the area
of (P+t)N Q, where P + t denotes P translated by t.

It can be seen as a formulation of shape matching: the overlap
area is a natural measure of similarity between polygons.



Previous Results

Applying a multidimensional version of parametric search
technique (1981) it is not difficult to obtain a
O((n+ m) polylog(n + m)) time algorithm.

Improvements:
= O((n+ m)log(n+ m)) by De Berg et al. (1998) using binary
search and matrix search techniques

= Unbalanced version in O(n + m?log® n), which is linear for
small m

= Various attempts using approximation algorithms and
prune-and-search



The Result

A randomized (exact) algorithm for Problem 1, running in
O(n+ m) expected time. The first improvement in 26 years, and
clearly optimal! But how?
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The Result

A randomized (exact) algorithm for Problem 1, running in

O(n+ m) expected time. The first improvement in 26 years, and
clearly optimal! But how? Parametric search reduces the
optimization to:

= implementation of a line oracle
= implementation of a point oracle (evaluating the area of

(P+t)N @ for a given t € R?).

Think of oracles as data structures with sublinear query time.
The clever idea is to reduce the cost of the oracles iteratively.
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Preliminaries

Lemma 1
V/Area(P + t) N Q is downward concave over all values of t that

yield nonzero overlap of P + t with Q.




Preliminaries

= Assume that P and @ have no adjacent edges and both
contain the origin as an interior point.

= We order the edges in counterclockwise order.
» Define N :=n+ m.

= "With high probability' means "with probability at least
il — A,



Prefix sums

= Let vi,...,v,and v{,..., V), be the vertices of P and Q

respectively, listed in counterclockwise order.

= P[vy : v,] is the convex hull set containing the origin, and all

the vertices between v, and v, in counterclockwise order.



Fact: we can produce a data structure to report Area(P[vy : v])
and Area(Q(vy : vy]) with O(N) processing time (the time
needed to construct the structure) and O(1) query time (the time

needed to access the wanted value).



Configuration Space

= A polygonal chain [v; : vj] is the union of the consecutive
edges between v; and v;.

= Given two edges e, €’ we define the parallelogram
m(e,e)={teR?|e+tne #0}.

= Given two polygonal chains A C P and B C @ we define the
set of all such line segments as

NAB) = |J on(ee)

ecAe’eB

g
= Define I1 to be (A, B) where each line segment is extended
to a line.



= The angle of an edge e on the boundary of an arbitrary
convex polygon A, denoted 04(e) is the angle
(counterclockwise measured) between a horizontal rightward
ray starting at the minimal vertex of e, and e.



= The angle of an edge e on the boundary of an arbitrary
convex polygon A, denoted 04(e) is the angle
(counterclockwise measured) between a horizontal rightward
ray starting at the minimal vertex of e, and e.

= For any subset X of edges of A define the angle range A(X)
to be the minimal interval in [0,27) such that f4(e) € Aa(X)
for all e € X.



The construction



Blocking Scheme

Given a parameter b € N, referred to as the block size, we define a
partition of P and @ into blocks Pi, ..., Pry/p) and @1, ... Qruyb)-

First, sort the set
{6p(e): e is an edge of P} U {fg(e): e is an edge of Q}

in increasing order, and then partition the resulting sequence into
consecutive subsequences Sy ... Sy of length b.
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Blocking Scheme

Given a parameter b € N, referred to as the block size, we define a
partition of P and @ into blocks Pi, ..., Pry/p) and @1, ... Qruyb)-

First, sort the set
{6p(e): e is an edge of P} U {fg(e): e is an edge of Q}

in increasing order, and then partition the resulting sequence into
consecutive subsequences Sy ... Sy of length b.

Define P; as the convex hull of the origin and set of edges of
{e:eis an edge of P, and Op(e) € S;}. Same for Q;.

10



Blocking Scheme

;: N .ﬂ O - ?e
p Q
Figure 1: Blocking scheme of two polygons P and @ with N = 20 and

b=4
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The Block Structure

Let u € RT, b € N and T be either a triangle, a line segment or a
point. A (u, b, T)-block structure is a data structure containing
the following:

1. Access to the vertices of P and @ in counterclockwise order
with O(1) query time, and access to the area prefix sums for
P and Q with O(1) query time.
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The Block Structure

Let u € RT, b € N and T be either a triangle, a line segment or a
point. A (u, b, T)-block structure is a data structure containing
the following:

1. Access to the vertices of P and @ in counterclockwise order
with O(1) query time, and access to the area prefix sums for
P and Q with O(1) query time.

2. A block size parameter b, which implies blocks
Pr,..., Pinss) and Q1 ... Qryb.

3. A partition of S = [N/b] into subsets Sgooq and Sp.q with
the requirement that |Spaq| < p.

4. For every i € Sgo04, access in time O(1) to a
constant-complexity quadratic function f; such that
fi(t) = Area((Pi +t) N Q) forall t € T.
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The ldea

Problem 2 (MaxRegion)
Given a (u, b, T)-block structure for P and Q, find

max Area((P +t) N Q)

teT

along with the translation t* € T realizing the maximum.
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Problem 3 (Cascade)

Given a (u, b, T)-block structure, parameters p/ and b’ such that b
divides b’, and triangle or line segment 7' C T, either produce a
(1, b', T")-block structure or report failure. Failure may be
reported only if the interior of 7" intersects more than p’/2 lines
from the set

<
S = U U M (Pk_[Z’Jr,-a Qk_tL’Jrj)
ke{0,...,[N/b'"]—1} (ij)e [%}X |:bT,/:|
where Py, ..., Pry/p) and Q1, ... Qpy/p) are the blocks of P and @

determined by b.
14



Cascading process

|

Stage 1: l l l l l l l ‘ b
|
Stage 2: l I ‘ b =2b
!
Stage 3: | | | b" =4b

Each cascade merges consecutive blocks (b — b’ — b"), reducing
their number geometrically while keeping the total work linear.

5



» Fact: |S| = O(Nb'), i.e. S is near-linear in size for all
b = No(l).
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» Fact: |S| = O(Nb'), i.e. S is near-linear in size for all
b = N,

= Denote the expected time complexity of the fastest
algorithm for MAXREGION by Ty_niax(N, b, i), where d is
the dimension of the region 7.
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» Fact: |S| = O(Nb'), i.e. S is near-linear in size for all
b = N,

= Denote the expected time complexity of the fastest
algorithm for MAXREGION by Ty_niax(N, b, i), where d is
the dimension of the region 7.

= Denote the expected time complexity of the fastest
algorithm for CASCADE by Tcascape(N, b, b, p).
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Calculating the time complexity




Main Lemmas

Lemma 2 (P

oint Oracle)
Forall2 <b<N,

for all yu,

log? b
To-max(N, b,p) = O (N' gb + Mb> :

Lemma 3 (Cascading Subroutine)
For all 2 < b, b’ < N such that b divides b, for all p,

log b’ log b
Teascane(N, b, b, ) = O (N' % + ,ub2> .
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Reducing to the Point Oracle

Theorem 4

For all 2 < b, b’ < N°1) such that b divides b, for all u, i/ such
that i/ = N1—o(),

To-niax(N, b, 1) =O(log(Nb'/1t')) - Ti—aax(N, b, 1) + O(NOFoM)) 4
O(1) - Teascane(N, b, b, 1) + To_nax(N, b, ,u/)
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Reducing to the Point Oracle

Theorem 4
For all 2 < b, b’ < N°1) such that b divides b, for all u, i/ such
that i/ = N1—o(),

Towax(N, b, 1) =O(log(Nb' /1)) - Taaiax(N, b, 1) + O(NOHHo) 4
O(l) : TCASCADE(Na b, b,a M) + T2—1\'IAX(N5 b/> ,U/)

Tiaax(N, b, 1) =O(log(Nb' /1)) - To—miax(N, b, p) + O(NOEFoM)y 4
O(l) . TCASCADE(N7 b7 b/a /’L) + Tl*l\’IAX(Na bl7 ,u’l)
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Proof of Theorem 4

= Start with a triangle 7 = 7y. Produce a sequence
To D T1 D TaD--- DT such that each triangle contains the
optimal translation t*.

= Invoke CASCADE to produce (with high probability) a
(4, b', T")-block structure.

= Invoke MAXREGION on the new block structure.

19



Producing 7’

Fact: if an algorithm produces the desired object "with high
probability", then the expected number of attempts in O(1).

20



Producing 7’
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Definition 5 (e-cutting)

An e-cutting for a set X of n hyperplanes in RY, for any d > 1, is
a partition of R? into simplices such that the interior of every
simplex intersects at most ¢ - n hyperplanes of X.
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Producing 7’

Fact: if an algorithm produces the desired object "with high
probability", then the expected number of attempts in O(1).
Definition 5 (e-cutting)

An e-cutting for a set X of n hyperplanes in RY, for any d > 1, is
a partition of R? into simplices such that the interior of every

simplex intersects at most ¢ - n hyperplanes of X.

%
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Lemma 6
Assume we can sample a uniformly random member of X in

expected time O(n%). Then in O(n%1+°()) expected time, we
can find a set of O(1) simplices that constitutes an e-cutting of X
with high probability.

21



How to produce Ty11 given 7.

= With high probability produce a %—cutting for the lines of S

that intersect the interior of 7.



How to produce Ty11 given 7.

= With high probability produce a %—cutting for the lines of S
that intersect the interior of 7.

= Locate the cell of the triangulation that contains t*. To do
so, check all O(1) triangles:
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= With high probability produce a %—cutting for the lines of S

that intersect the interior of 7.
= Locate the cell of the triangulation that contains t*. To do
so, check all O(1) triangles:

= For a single triangle X', consider an infinitesimal smaller
copy X'~ and find the optimal translation restricted to the
edges of X and X~
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How to produce Ty11 given 7.

= With high probability produce a %—cutting for the lines of S

that intersect the interior of 7.
= Locate the cell of the triangulation that contains t*. To do
so, check all O(1) triangles:
= For a single triangle X', consider an infinitesimal smaller
copy X'~ and find the optimal translation restricted to the
edges of X and X~
= |f one of the line segments for X~ has a translation realising a
larger area than all of the line segments of X', by concavity of
the area function t* € X'. Otherwise t* ¢ X

22



Proof of Theorem 4

= Start with 7 = 7. Produce a sequence
To D T1DTaD--- DT such that each triangle contains the
optimal translation t*.

= O( I\PIL[?/) ’ Tl-Max(N> b7 M) + O(No.lJrO(l))

= Invoke CASCADE to produce (with high probability) a
(4, b', T")-block structure.

= O(Nlogb log b +Mb2)
= [Invoke MAXREGION on the new block structure.

= T2—Max(N7 bla M,)-

23



Putting it all Together

Theorem 7
There is an algorithm for Problem 1 running in expected time

O(n+ m)

24



Proof of Theorem 7

= Take p:=20-N/b%and p/ :=20- N/(b')3.

25



Proof of Theorem 7

= Take p:=20-N/b%and p/ :=20- N/(b')3.
= Reduce the problem to an instance of MAXREGION over a
(20 - N/23,2, T)-block structure.

= The expected running time for Problem 1 is
O(N) + TQ,MAX(N, 2).
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Proof of Theorem 7

= Take p:=20-N/b%and p/ :=20- N/(b')3.

= Reduce the problem to an instance of MAXREGION over a
(20 - N/23,2, T)-block structure.

= The expected running time for Problem 1 is
O(N) + To—max(N, 2).

= Forany 2 < b, b’ < N°O):

log b’ log?® b

Ti-max(N, b) = O (N b

) + T1—wmax(N, b).

= Solve the recursion in two steps: first suppose that
b > (logN)© for some constant C;. We will apply the
following result from Toledo.
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Parametric Search (Megiddo, Toledo, Cole)

= Goal: find the optimal parameter t* where a concave function
F(t) attains its maximum.

= Assume we can evaluate F(t) efficiently — this is the
evaluation oracle (time Tp).

= We also have a parallel version of this oracle (time T, using
P processors).

= Parametric search simulates the parallel algorithm
sequentially, resolving comparisons that depend on t* via
oracle calls.

= General running time in fixed dimension d:
O(To(T,log P~ 1)

26



Parametric Search (Megiddo, Toledo, Cole)

= In our case (d = 1):

= T = cost of the point oracle To.max(N, b, 1),
» = Timax(N,b) = O(N/logN).

27



Proof of Theorem 7

= |n the second step we solve a geometric series and setting

b = 2b: ,
log> b N
og n
b log N

T1-Max (N '
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log b log® b LN log b’

To-max(N, b) = O (’V b Togh
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Proof of Theorem 7

= |n the second step we solve a geometric series and setting

b = 2b: ,
log> b N
og n
b log N

T1-Max (N '

= Analogously, for 2 < b, b’ < N°(1):

! 9 /
' log b’ log” b LN log b
b logN

To-max(N, b) = O (’V >+T2MAX(N7 b')

= Again if we take b’ = 2b:

To—max(N, b) = O (’V A logh

= To max(N,2) = O(N) and the theorem follows. O

' log* b LN log? log N)
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Constructing the Cascading Subroutine

Lemma (Cascading Subroutine)
For all 2 < b, b’ < N such that b divides b’, for all p,

. log b log b +Mb2>-

Tcascane(N, b, b, u)=0 (N b

29



First we need some tools to help classify the new blocks.

Lemma 8

Let X and Y be any two polygonal chains of P and Q, respectively.
If AA(X)NA(Y) =10, then X and Y intersect at most twice and
we can find the intesection point(s) in time O(log|X|log|Y]).

Lemma 9
Let X and Y be polygonal chains of P and Q, respectively, and T’

be a triangle or a line segment. If Ap(X) N Ag(Y) =0, then we
can determine if some line segment in (X, Y) intersects the
interior of T" in time O(log|X|log|Y).
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Proof of Lemma 3

» Fact: if 77 is contained in a cell of MN(P, Q), then there is a
constant complexity quadratic function calculating the area.
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Proof of Lemma 3

» Fact: if 77 is contained in a cell of MN(P, Q), then there is a
constant complexity quadratic function calculating the area.
« Define Go={(k—1)- & +1,... k- &} ie P, =Uecc Pi

and Q = Ujec, Q- Denote by fi(t) = Area((P) + t) N Q).

fi(t) = Z Area ((P,- +t)N Qj) =

(ij)€ Ce x Cx
- Area((P; +1)n Q,-) + ). Area ((Pi +1)n 01)7
i€ Ck (i,j)eCk'ka

i#]

= Solve the two summations separately.
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First Summation

= Read each function Area((P; + t) N Q;) with i € Sgooq. This
takes O(%/) time for each k, or O(N/b) for all k.
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First Summation

= Read each function Area((P; + t) N Q;) with i € Sgooq. This
takes O(%/) time for each k, or O(N/b) for all k.

= For each i in Sp,q check whether 77 lies in a single cell of
N(P;, Q;) in time O(b?). If this is not the case for some i,
add the index k to Sp.q. Total time: O(ub?).

32



Second Summation

= Rewrite the sum as:
Z Area ((P,- +t)N Q,.Tk) + Z Area((P,- +t)N Q,J’rk),
ieCy i€ Cy
where

Qr=UQ &k=Uae

J€Ck Jj€Ck
Jj<i J>i

are convex polygons.
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Second Summation

= Rewrite the sum as:
Z Area ((P,- +t)N Q,.Tk) + Z Area((P,- +t)N Q,J’rk),
ieCy i€ Cy
where

Qi=UQ &= Ua:
JE€Ck JE€Ck
Jj<i Jj>i
are convex polygons.
= A(Ep(Pi)) N N(EQ(Q;)) = 0. So break P; +t and @; into
pieces that satisfy the preconditions of Lemma 8 and
Lemma 9.
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Second Summation

= Rewrite the sum as:
Z Area ((P,- +t)N Q,.Tk) + Z Area((P,- +t)N Q,J’rk),
ieCy i€ Cy
where

Qr=UQ &k=Uae

J€Ck J€Ck
J<i J>1

are convex polygons.

= A(Ep(P;)) N A(Eq(Q;y)) = 0. So break P; + t and Q; into
pieces that satisfy the preconditions of Lemma 8 and
Lemma 9.

= In time O(log blog b’) we determine if 7 lies in a single cell
of M(Pi, Q) If it happens, calculate the functions.
Otherwise add k to Spaq.
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Conclusion of the proof

= By summing over i and k gives total time O(N - %)_
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Conclusion of the proof

= By summing over i and k gives total time O(N - %)_

= Each line in S corresponds to at most two k's in Sp.q.
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Conclusion of the proof

= By summing over i and k gives total time O(N - %)_

= Each line in S corresponds to at most two k's in Sp.q.

= Thus if |Spag| > p, then more than /2 lines of S intersect
T O
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Thank you for the attention
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