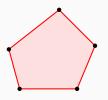
A Linear Time Algorithm for the Maximum Overlap of Two Convex Polygons Under Translation SoCG(2025)

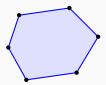
Timothy M. Chan Isaac M. Hair Presented by Giuseppe Pino

Introduction

Problem 1

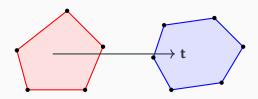
Given two convex polygons P and Q in the plane, with n and m edges respectively, find a vector in $t \in \mathbb{R}^2$ that maximizes the area of $(P+t) \cap Q$, where P+t denotes P translated by t.





Problem 1

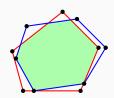
Given two convex polygons P and Q in the plane, with n and m edges respectively, find a vector in $t \in \mathbb{R}^2$ that maximizes the area of $(P+t) \cap Q$, where P+t denotes P translated by t.



1

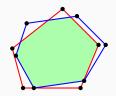
Problem 1

Given two convex polygons P and Q in the plane, with n and m edges respectively, find a vector in $t \in \mathbb{R}^2$ that maximizes the area of $(P+t) \cap Q$, where P+t denotes P translated by t.



Problem 1

Given two convex polygons P and Q in the plane, with n and m edges respectively, find a vector in $t \in \mathbb{R}^2$ that maximizes the area of $(P+t) \cap Q$, where P+t denotes P translated by t.



It can be seen as a formulation of **shape matching**: the overlap area is a natural measure of similarity between polygons.

1

Previous Results

Applying a multidimensional version of **parametric search** technique (1981) it is not difficult to obtain a $\mathcal{O}((n+m)\operatorname{polylog}(n+m))$ time algorithm.

Improvements:

- $\mathcal{O}((n+m)\log(n+m))$ by De Berg et al. (1998) using **binary** search and matrix search techniques
- Unbalanced version in $\mathcal{O}(n + m^2 \log^3 n)$, which is linear for small m
- Various attempts using approximation algorithms and prune-and-search

A randomized (exact) algorithm for Problem 1, running in $\mathcal{O}(n+m)$ expected time. The first improvement in 26 years, and clearly optimal! But how?

A randomized (exact) algorithm for Problem 1, running in $\mathcal{O}(n+m)$ expected time. The first improvement in 26 years, and clearly optimal! But how? Parametric search reduces the optimization to:

- implementation of a line oracle
- implementation of a *point oracle* (evaluating the area of $(P+t)\cap Q$ for a given $t\in\mathbb{R}^2$).

3

A randomized (exact) algorithm for Problem 1, running in $\mathcal{O}(n+m)$ expected time. The first improvement in 26 years, and clearly optimal! But how? Parametric search reduces the optimization to:

- implementation of a *line oracle*
- implementation of a *point oracle* (evaluating the area of $(P+t)\cap Q$ for a given $t\in\mathbb{R}^2$).

Think of oracles as **data structures** with sublinear query time.

A randomized (exact) algorithm for Problem 1, running in $\mathcal{O}(n+m)$ expected time. The first improvement in 26 years, and clearly optimal! But how? Parametric search reduces the optimization to:

- implementation of a *line oracle*
- implementation of a *point oracle* (evaluating the area of $(P+t)\cap Q$ for a given $t\in\mathbb{R}^2$).

Think of oracles as **data structures** with sublinear query time. The clever idea is to **reduce the cost of the oracles** iteratively.

Preliminaries

Preliminaries

Lemma 1

 $\sqrt{\operatorname{Area}(P+t)\cap Q}$ is downward concave over all values of t that yield nonzero overlap of P+t with Q.

Preliminaries

- Assume that P and Q have no adjacent edges and both contain the origin as an interior point.
- We order the edges in **counterclockwise** order.
- Define N := n + m.
- "With high probability" means "with probability at least $1 N^{-\Omega(1)}$ ".

Prefix sums

- Let v_1, \ldots, v_n and v'_1, \ldots, v'_m be the vertices of P and Q respectively, listed in **counterclockwise** order.
- $P[v_x : v_y]$ is the **convex hull set** containing the origin, and all the vertices between v_x and v_y in counterclockwise order.

Fact: we can produce a data structure to report $Area(P[v_x : v_y])$ and $Area(Q(v_x' : v_y'])$ with $\mathcal{O}(N)$ processing time (the time needed to construct the structure) and $\mathcal{O}(1)$ query time (the time needed to access the wanted value).

Configuration Space

- A polygonal chain [v_i: v_j] is the union of the consecutive edges between v_i and v_j.
- Given two edges e, e' we define the **parallelogram**

$$\pi(e,e') = \{t \in \mathbb{R}^2 \mid e+t \cap e' \neq \emptyset\}.$$

• Given two polygonal chains $A \subseteq P$ and $B \subseteq Q$ we define the set of all such line segments as

$$\Pi(A,B) = \bigcup_{e \in A, e' \in B} \partial \pi(e,e')$$

• Define Π to be $\Pi(A, B)$ where each line segment is **extended** to a line.

Angles

■ The angle of an edge e on the boundary of an arbitrary convex polygon A, denoted $\theta_A(e)$ is the angle (counterclockwise measured) between a horizontal rightward ray starting at the minimal vertex of e, and e.

Angles

- The angle of an edge e on the boundary of an arbitrary convex polygon A, denoted $\theta_A(e)$ is the angle (counterclockwise measured) between a horizontal rightward ray starting at the minimal vertex of e, and e.
- For any subset X of edges of A define the **angle range** $\Lambda_A(X)$ to be the minimal interval in $[0, 2\pi)$ such that $\theta_A(e) \in \Lambda_A(X)$ for all $e \in X$.

The construction

Blocking Scheme

Given a **parameter** $b \in \mathbb{N}$, referred to as the block size, we define a partition of P and Q into blocks $P_1, \ldots, P_{\lceil N/b \rceil}$ and $Q_1, \ldots, Q_{\lceil N/b \rceil}$. First, **sort** the set

$$\{\theta_P(e)\colon e \text{ is an edge of } P\} \cup \{\theta_Q(e)\colon e \text{ is an edge of } Q\}$$

in increasing order, and then **partition** the resulting sequence into consecutive subsequences $S_1 \dots S_{\lceil N/b \rceil}$ of length b.

Blocking Scheme

Given a **parameter** $b \in \mathbb{N}$, referred to as the block size, we define a partition of P and Q into blocks $P_1, \ldots, P_{\lceil N/b \rceil}$ and $Q_1, \ldots, Q_{\lceil N/b \rceil}$.

First, sort the set

$$\{\theta_P(e)\colon e \text{ is an edge of } P\} \cup \{\theta_Q(e)\colon e \text{ is an edge of } Q\}$$

in increasing order, and then **partition** the resulting sequence into consecutive subsequences $S_1 \dots S_{\lceil N/b \rceil}$ of length b.

Define P_i as the **convex hull** of the origin and set of edges of $\{e: e \text{ is an edge of } P, \text{ and } \theta_P(e) \in S_i\}$. Same for Q_j .

Blocking Scheme

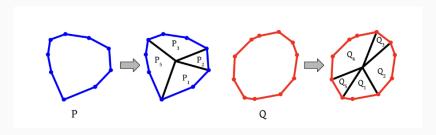


Figure 1: Blocking scheme of two polygons P and Q with N=20 and D=4

Let $\mu \in \mathbb{R}^+$, $b \in \mathbb{N}$ and \mathcal{T} be either a triangle, a line segment or a point. A (μ, b, \mathcal{T}) -block structure is a data structure containing the following:

1. Access to the **vertices** of P and Q in counterclockwise order with $\mathcal{O}(1)$ query time, and access to the **area prefix sums** for P and Q with $\mathcal{O}(1)$ query time.

Let $\mu \in \mathbb{R}^+$, $b \in \mathbb{N}$ and \mathcal{T} be either a triangle, a line segment or a point. A (μ, b, \mathcal{T}) -block structure is a data structure containing the following:

- 1. Access to the **vertices** of P and Q in counterclockwise order with $\mathcal{O}(1)$ query time, and access to the **area prefix sums** for P and Q with $\mathcal{O}(1)$ query time.
- 2. A block size parameter b, which implies **blocks** $P_1, \ldots, P_{\lceil N/b \rceil}$ and $Q_1, \ldots, Q_{\lceil N/b \rceil}$.

Let $\mu \in \mathbb{R}^+$, $b \in \mathbb{N}$ and \mathcal{T} be either a triangle, a line segment or a point. A (μ, b, \mathcal{T}) -block structure is a data structure containing the following:

- 1. Access to the **vertices** of P and Q in counterclockwise order with $\mathcal{O}(1)$ query time, and access to the **area prefix sums** for P and Q with $\mathcal{O}(1)$ query time.
- 2. A block size parameter b, which implies **blocks** $P_1, \ldots, P_{\lceil N/b \rceil}$ and $Q_1, \ldots, Q_{\lceil N/b \rceil}$.
- 3. A partition of $S = \lceil N/b \rceil$ into subsets S_{good} and S_{bad} with the requirement that $|S_{bad}| \leq \mu$.

Let $\mu \in \mathbb{R}^+$, $b \in \mathbb{N}$ and \mathcal{T} be either a triangle, a line segment or a point. A (μ, b, \mathcal{T}) -block structure is a data structure containing the following:

- 1. Access to the **vertices** of P and Q in counterclockwise order with $\mathcal{O}(1)$ query time, and access to the **area prefix sums** for P and Q with $\mathcal{O}(1)$ query time.
- 2. A block size parameter b, which implies **blocks** $P_1, \ldots, P_{\lceil N/b \rceil}$ and $Q_1, \ldots, Q_{\lceil N/b \rceil}$.
- 3. A partition of $S = \lceil N/b \rceil$ into subsets S_{good} and S_{bad} with the requirement that $|S_{bad}| \leq \mu$.
- 4. For every $i \in S_{good}$, access in time $\mathcal{O}(1)$ to a **constant-complexity quadratic** function f_i such that $f_i(t) = \text{Area}((P_i + t) \cap Q)$ for all $t \in \mathcal{T}$.

The Idea

Problem 2 (MaxRegion)

Given a (μ, b, \mathcal{T}) -block structure for P and Q, find

$$\max_{t \in \mathcal{T}} \operatorname{Area}((P+t) \cap Q)$$

along with the **translation** $t^* \in \mathcal{T}$ realizing the maximum.

Cascade

Problem 3 (Cascade)

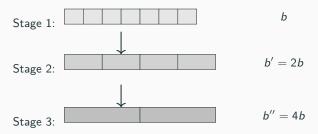
Given a (μ, b, \mathcal{T}) -block structure, parameters μ' and b' such that b divides b', and triangle or line segment $\mathcal{T}' \subseteq \mathcal{T}$, either produce a (μ', b', \mathcal{T}') -block structure or report failure. Failure may be reported only if the interior of \mathcal{T}' intersects more than $\mu'/2$ lines from the set

$$\mathcal{S} := \bigcup_{k \in \{0, \dots, \lceil N/b' \rceil - 1\}} \left(\bigcup_{(i,j) \in \left[\frac{b'}{b}\right] \times \left[\frac{b'}{b}\right]} \overset{\leftrightarrow}{\Pi} \left(P_{k \cdot \frac{b'}{b} + i}, Q_{k \cdot \frac{b'}{b} + j} \right) \right)$$

where $P_1, \ldots, P_{\lceil N/b \rceil}$ and $Q_1, \ldots Q_{\lceil N/b \rceil}$ are the blocks of P and Q determined by b.

14

Cascading process



Each cascade merges consecutive blocks ($b \rightarrow b' \rightarrow b''$), reducing their number geometrically while keeping the total work linear.

■ Fact: |S| = O(Nb'), i.e. S is near-linear in size for all $b' = N^{o(1)}$.

- Fact: |S| = O(Nb'), i.e. S is near-linear in size for all $b' = N^{o(1)}$.
- Denote the **expected time complexity** of the fastest algorithm for MAXREGION by $T_{d-\text{MAX}}(N,b,\mu)$, where d is the dimension of the region \mathcal{T} .

- Fact: |S| = O(Nb'), i.e. S is near-linear in size for all $b' = N^{o(1)}$.
- Denote the **expected time complexity** of the fastest algorithm for MAXREGION by $T_{d-\text{MAX}}(N, b, \mu)$, where d is the dimension of the region \mathcal{T} .
- Denote the **expected time complexity** of the fastest algorithm for CASCADE by $T_{\text{CASCADE}}(N, b, b', \mu)$.

Calculating the time complexity

Main Lemmas

Lemma 2 (Point Oracle)

For all $2 \le b \le N$, for all μ ,

$$\mathcal{T}_{0-\mathrm{Max}}(\mathsf{N},b,\mu) = \mathcal{O}\left(\mathsf{N}\cdot rac{\log^2 b}{b} + \mu b
ight).$$

Lemma 3 (Cascading Subroutine)

For all $2 \le b, b' \le N$ such that b divides b', for all μ ,

$$\mathcal{T}_{\mathrm{CASCADE}}(\mathsf{N},b,b',\mu) = \mathcal{O}\left(\mathsf{N} \cdot \frac{\log b' \log b}{b} + \mu b^2\right).$$

Reducing to the Point Oracle

Theorem 4

For all $2 \le b, b' \le N^{o(1)}$ such that b divides b', for all μ, μ' such that $\mu' = N^{1-o(1)}$,

$$T_{2-\text{Max}}(N, b, \mu) = \mathcal{O}(\log(Nb'/\mu')) \cdot T_{1-\text{Max}}(N, b, \mu) + \mathcal{O}(N^{0.1+o(1)}) +$$

$$\mathcal{O}(1) \cdot T_{\text{Cascade}}(N, b, b', \mu) + T_{2-\text{Max}}(N, b', \mu')$$

Reducing to the Point Oracle

Theorem 4

For all $2 \le b, b' \le N^{o(1)}$ such that b divides b', for all μ, μ' such that $\mu' = N^{1-o(1)}$,

$$T_{2-\text{Max}}(N, b, \mu) = \mathcal{O}(\log(Nb'/\mu')) \cdot T_{1-\text{Max}}(N, b, \mu) + \mathcal{O}(N^{0.1+o(1)}) + \mathcal{O}(1) \cdot T_{\text{CASCADE}}(N, b, b', \mu) + T_{2-\text{Max}}(N, b', \mu')$$

$$\begin{split} T_{1-\text{Max}}(N,b,\mu) = & \mathcal{O}(\log(Nb'/\mu')) \cdot T_{0-\text{Max}}(N,b,\mu) + \mathcal{O}(N^{0.1+o(1)}) + \\ & \mathcal{O}(1) \cdot T_{\text{CASCADE}}(N,b,b',\mu) + T_{1-\text{Max}}(N,b',\mu') \end{split}$$

- Start with a triangle $\mathcal{T} = \mathcal{T}_0$. Produce a **sequence** $\mathcal{T}_0 \supset \mathcal{T}_1 \supset \mathcal{T}_2 \supset \cdots \supset \mathcal{T}'$ such that each triangle contains the optimal translation t^* .
- Invoke Cascade to produce (with high probability) a (μ', b', \mathcal{T}') -block structure.
- **Invoke** MaxRegion on the new block structure.

Fact: if an algorithm produces the desired object "with high probability", then the expected number of attempts in $\mathcal{O}(1)$.

Fact: if an algorithm produces the desired object "with high probability", then the expected number of attempts in $\mathcal{O}(1)$.

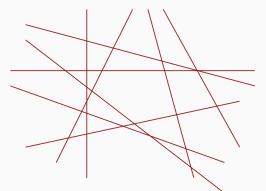
Definition 5 (ε -cutting)

An ε -cutting for a set X of n hyperplanes in \mathbb{R}^d , for any $d \geq 1$, is a **partition** of \mathbb{R}^d into simplices such that the interior of every simplex intersects at most $\varepsilon \cdot n$ hyperplanes of X.

Fact: if an algorithm produces the desired object "with high probability", then the expected number of attempts in $\mathcal{O}(1)$.

Definition 5 (ε -cutting)

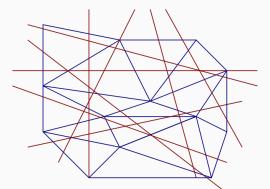
An ε -cutting for a set X of n hyperplanes in \mathbb{R}^d , for any $d \geq 1$, is a **partition** of \mathbb{R}^d into simplices such that the interior of every simplex intersects at most $\varepsilon \cdot n$ hyperplanes of X.



Fact: if an algorithm produces the desired object "with high probability", then the expected number of attempts in $\mathcal{O}(1)$.

Definition 5 (ε -cutting)

An ε -cutting for a set X of n hyperplanes in \mathbb{R}^d , for any $d \ge 1$, is a **partition** of \mathbb{R}^d into simplices such that the interior of every simplex intersects at most $\varepsilon \cdot n$ hyperplanes of X.



Lemma 6

Assume we can sample a uniformly random member of X in expected time $\mathcal{O}(n^{0.1})$. Then in $\mathcal{O}(n^{0.1+o(1)})$ expected time, we can find a set of $\mathcal{O}(1)$ simplices that constitutes an ε -cutting of X with high probability.

• With high probability produce a $\frac{1}{2}$ -cutting for the lines of S that intersect the interior of T_x .

- With high probability produce a $\frac{1}{2}$ -cutting for the lines of S that intersect the interior of T_x .
- Locate the cell of the triangulation that contains t^* . To do so, check all $\mathcal{O}(1)$ triangles:

- With high probability produce a $\frac{1}{2}$ -cutting for the lines of S that intersect the interior of T_x .
- Locate the cell of the triangulation that contains t^* . To do so, check all $\mathcal{O}(1)$ triangles:
 - For a single triangle X, consider an infinitesimal smaller copy X⁻ and find the optimal translation restricted to the edges of X and X⁻.

- With high probability produce a $\frac{1}{2}$ -cutting for the lines of S that intersect the interior of T_x .
- Locate the cell of the triangulation that contains t^* . To do so, check all $\mathcal{O}(1)$ triangles:
 - For a single triangle X, consider an infinitesimal smaller copy X⁻ and find the optimal translation restricted to the edges of X and X⁻.
 - If one of the line segments for \mathcal{X}^- has a translation realising a larger area than all of the line segments of \mathcal{X} , by concavity of the area function $t^* \in \mathcal{X}$. Otherwise $t^* \notin \mathcal{X}$.

• Start with $\mathcal{T} = \mathcal{T}_0$. Produce a **sequence** $\mathcal{T}_0 \supset \mathcal{T}_1 \supset \mathcal{T}_2 \supset \cdots \supset \mathcal{T}'$ such that each triangle contains the optimal translation t^* .

$$\Rightarrow \mathcal{O}\!\left(\log rac{\mathit{Nb'}}{\mu'}
ight) \cdot \mathit{T}_{1 ext{-Max}}(\mathit{N},\mathit{b},\mu) + \mathcal{O}\!\left(\mathit{N}^{0.1+o(1)}
ight)$$

• Invoke Cascade to produce (with high probability) a (μ', b', \mathcal{T}') -block structure.

$$\Rightarrow \mathcal{O}\Big(\frac{N\log b'\log b}{b} + \mu b^2\Big).$$

• Invoke MaxRegion on the new block structure.

$$\Rightarrow T_{2\text{-Max}}(N, b', \mu').$$

Putting it all Together

Theorem 7

There is an algorithm for Problem 1 running in expected time $\mathcal{O}(n+m)$

• Take $\mu := 20 \cdot N/b^3$ and $\mu' := 20 \cdot N/(b')^3$.

- Take $\mu := 20 \cdot N/b^3$ and $\mu' := 20 \cdot N/(b')^3$.
- Reduce the problem to an instance of MAXREGION over a $(20 \cdot N/2^3, 2, \mathcal{T})$ -block structure.
- The expected running time for Problem 1 is $\mathcal{O}(N) + \mathcal{T}_{2-\mathrm{Max}}(N,2)$.

- Take $\mu := 20 \cdot N/b^3$ and $\mu' := 20 \cdot N/(b')^3$.
- Reduce the problem to an instance of MAXREGION over a $(20 \cdot N/2^3, 2, \mathcal{T})$ -block structure.
- The expected running time for Problem 1 is $\mathcal{O}(N) + T_{2-\mathrm{Max}}(N,2)$.
- For any $2 \le b, b' \le N^{o(1)}$:

$$\mathcal{T}_{1-\mathrm{Max}}(N,b) = \mathcal{O}\left(N \cdot \frac{\log b' \log^2 b}{b}\right) + \mathcal{T}_{1-\mathrm{Max}}(N,b').$$

- Take $\mu := 20 \cdot N/b^3$ and $\mu' := 20 \cdot N/(b')^3$.
- Reduce the problem to an instance of MAXREGION over a $(20 \cdot N/2^3, 2, \mathcal{T})$ -block structure.
- The expected running time for Problem 1 is $\mathcal{O}(N) + T_{2-\mathrm{Max}}(N,2)$.
- For any $2 \le b, b' \le N^{o(1)}$:

$$\mathcal{T}_{1-\mathrm{Max}}(N,b) = \mathcal{O}\left(N \cdot \frac{\log b' \log^2 b}{b}\right) + \mathcal{T}_{1-\mathrm{Max}}(N,b').$$

■ Solve the recursion in **two steps**: first suppose that $b \ge (logN)^{C_1}$ for some constant C_1 . We will apply the following result from Toledo.

Parametric Search (Megiddo, Toledo, Cole)

- Goal: find the optimal parameter t^* where a concave function F(t) attains its maximum.
- Assume we can **evaluate** F(t) efficiently this is the **evaluation oracle** (time T_0).
- We also have a parallel version of this oracle (time T_p, using P processors).
- Parametric search simulates the parallel algorithm sequentially, resolving comparisons that depend on t* via oracle calls.
- **General running time** in fixed dimension *d*:

$$\mathcal{O}\left(T_0(T_p\log P)^{2^d-1}\right)$$

Parametric Search (Megiddo, Toledo, Cole)

- In our case (d = 1):
 - $T_0 = \text{cost of the point oracle } T_{0-\text{Max}}(N, b, \mu),$
 - \Rightarrow $T_{1-Max}(N, b) = O(N/\log N)$.

• In the **second step** we solve a geometric series and setting b' = 2b:

$$T_{1-Max}\left(N\cdot \frac{\log^3 b}{b} + \frac{N}{\log N}\right)$$

• In the second step we solve a geometric series and setting b' = 2b:

$$T_{1-Max}\left(N\cdot \frac{\log^3 b}{b} + \frac{N}{\log N}\right)$$

• Analogously, for $2 \le b, b' \le N^{o(1)}$:

$$T_{2-\mathrm{MAX}}(N,b) = \mathcal{O}\left(N \cdot \frac{\log b' \log^3 b}{b} + N \cdot \frac{\log b'}{\log N}\right) + T_{2-\mathrm{MAX}}(N,b')$$

• In the second step we solve a geometric series and setting b' = 2b:

$$T_{1-Max}\left(N\cdot \frac{\log^3 b}{b} + \frac{N}{\log N}\right)$$

• Analogously, for $2 \le b, b' \le N^{o(1)}$:

$$T_{2-\mathrm{Max}}(N,b) = \mathcal{O}\left(N \cdot \frac{\log b' \log^3 b}{b} + N \cdot \frac{\log b'}{\log N}\right) + T_{2-\mathrm{Max}}(N,b')$$

• Again if we take b' = 2b:

$$T_{2-Max}(N,b) = \mathcal{O}\left(N \cdot \frac{\log^4 b}{b} + N \cdot \frac{\log^2 \log N}{\log N}\right)$$

• $T_{2-Max}(N,2) = \mathcal{O}(N)$ and the theorem follows.

Constructing the Cascading Subroutine

Lemma (Cascading Subroutine)

For all $2 \le b, b' \le N$ such that b divides b', for all μ ,

$$T_{\text{CASCADE}}(N, b, b', \mu) = \mathcal{O}\left(N \cdot \frac{\log b' \log b}{b} + \mu b^2\right).$$

First we need some tools to help classify the new blocks.

Lemma 8

Let X and Y be any two polygonal chains of P and Q, respectively. If $\Lambda_A(X) \cap \Lambda(Y) = \emptyset$, then X and Y intersect at most twice and we can find the intesection point(s) in time $\mathcal{O}(\log |X| \log |Y|)$.

Lemma 9

Let X and Y be polygonal chains of P and Q, respectively, and \mathcal{T}' be a triangle or a line segment. If $\Lambda_P(X) \cap \Lambda_Q(Y) = \emptyset$, then we can determine if some line segment in $\Pi(X,Y)$ intersects the interior of \mathcal{T}' in time $\mathcal{O}(\log |X| \log |Y|)$.

Proof of Lemma 3

■ Fact: if \mathcal{T}' is contained in a cell of $\Pi(P, Q)$, then there is a constant complexity quadratic function calculating the area.

Proof of Lemma 3

- Fact: if \mathcal{T}' is contained in a cell of $\Pi(P,Q)$, then there is a constant complexity quadratic function calculating the area.
- Define $C_k = \{(k-1) \cdot \frac{b'}{b} + 1, \dots, k \cdot \frac{b'}{b}\}$, i.e. $P_k' = \bigcup_{i \in C_k} P_i$ and $Q_k' = \bigcup_{j \in C_k} Q_j$. Denote by $f_k(t) = \text{Area}((P_k' + t) \cap Q_k')$.

Proof of Lemma 3

- Fact: if \mathcal{T}' is contained in a cell of $\Pi(P,Q)$, then there is a constant complexity quadratic function calculating the area.
- Define $C_k = \{(k-1) \cdot \frac{b'}{b} + 1, \dots, k \cdot \frac{b'}{b}\}$, i.e. $P_k' = \bigcup_{i \in C_k} P_i$ and $Q_k' = \bigcup_{j \in C_k} Q_j$. Denote by $f_k(t) = \text{Area}((P_k' + t) \cap Q_k')$.

$$f_k(t) = \sum_{\substack{(i,j) \in C_k imes C_k}} \operatorname{Area}\Big((P_i + t) \cap Q_j\Big) = \sum_{\substack{i \in C_k}} \operatorname{Area}\Big((P_i + t) \cap Q_i\Big) + \sum_{\substack{(i,j) \in C_k imes C_k \ i
eq j}} \operatorname{Area}\Big((P_i + t) \cap Q_j\Big),$$

Solve the two summations separately.

First Summation

■ Read each function Area($(P_i + t) \cap Q_i$) with $i \in S_{good}$. This takes $\mathcal{O}(\frac{b'}{b})$ time for each k, or $\mathcal{O}(N/b)$ for all k.

First Summation

- Read each function Area $((P_i + t) \cap Q_i)$ with $i \in S_{good}$. This takes $\mathcal{O}(\frac{b'}{h})$ time for each k, or $\mathcal{O}(N/b)$ for all k.
- For each i in S_{bad} check whether \mathcal{T}' lies in a single cell of $\Pi(P_i, Q_i)$ in time $\mathcal{O}(b^2)$. If this is not the case for some i, add the index k to S_{bad} . Total time: $\mathcal{O}(\mu b^2)$.

Second Summation

• Rewrite the sum as:

$$\sum_{i \in C_k} \mathsf{Area}\Big((P_i + t) \cap Q_{i,k}^-\Big) \; + \; \sum_{i \in C_k} \mathsf{Area}\Big((P_i + t) \cap Q_{i,k}^+\Big),$$

where

$$Q_{i,k}^- = \bigcup_{\substack{j \in C_k \\ j < i}} Q_j, \qquad Q_{i,k}^+ = \bigcup_{\substack{j \in C_k \\ j > i}} Q_j.$$

are convex polygons.

Second Summation

Rewrite the sum as:

$$\sum_{i \in C_k} \mathsf{Area}\Big((P_i + t) \cap Q_{i,k}^-\Big) \; + \; \sum_{i \in C_k} \mathsf{Area}\Big((P_i + t) \cap Q_{i,k}^+\Big),$$

where

$$Q_{i,k}^- = \bigcup_{\substack{j \in C_k \\ j < i}} Q_j, \qquad Q_{i,k}^+ = \bigcup_{\substack{j \in C_k \\ j > i}} Q_j.$$

are convex polygons.

• $\Lambda(E_P(P_i)) \cap \Lambda(E_Q(Q_{i,k}^-)) = \emptyset$. So break $P_i + t$ and $Q_{i,k}^-$ into pieces that satisfy the preconditions of **Lemma** 8 and **Lemma** 9.

Second Summation

Rewrite the sum as:

$$\sum_{i \in C_k} \mathsf{Area}\Big((P_i + t) \cap Q_{i,k}^-\Big) \; + \; \sum_{i \in C_k} \mathsf{Area}\Big((P_i + t) \cap Q_{i,k}^+\Big),$$

where

$$Q_{i,k}^- = \bigcup_{\substack{j \in C_k \\ j < i}} Q_j, \qquad Q_{i,k}^+ = \bigcup_{\substack{j \in C_k \\ j > i}} Q_j.$$

are convex polygons.

- $\Lambda(E_P(P_i)) \cap \Lambda(E_Q(Q_{i,k}^-)) = \emptyset$. So break $P_i + t$ and $Q_{i,k}^-$ into pieces that satisfy the preconditions of **Lemma** 8 and **Lemma** 9.
- In time O(log b log b') we determine if T' lies in a single cell
 of Π(P_i, Q_{i,k}). If it happens, calculate the functions.
 Otherwise add k to S_{bad}.

Conclusion of the proof

■ By summing over i and k gives **total time** $\mathcal{O}(N \cdot \frac{\log b \log b'}{b})$.

Conclusion of the proof

- By summing over i and k gives **total time** $\mathcal{O}(N \cdot \frac{\log b \log b'}{b})$.
- Each line in S corresponds to at most two k's in S_{bad} .

Conclusion of the proof

- By summing over i and k gives **total time** $\mathcal{O}(N \cdot \frac{\log b \log b'}{b})$.
- Each line in S corresponds to **at most two** k's in S_{bad} .
- Thus if $|S_{bad}| > \mu$, then more than $\mu/2$ lines of S intersect \mathcal{T}' .

Thank you for the attention