
A Linear Time Algorithm for the Maximum
Overlap of Two Convex Polygons Under
Translation SoCG(2025)

Timothy M. Chan Isaac M. Hair
Presented by Giuseppe Pino

Introduction

Motivation and Background

Problem 1
Given two convex polygons P and Q in the plane, with n and m
edges respectively, find a vector in t ∈ R2 that maximizes the area
of (P + t) ∩ Q, where P + t denotes P translated by t.

1

Motivation and Background

Problem 1
Given two convex polygons P and Q in the plane, with n and m
edges respectively, find a vector in t ∈ R2 that maximizes the area
of (P + t) ∩ Q, where P + t denotes P translated by t.

t

1

Motivation and Background

Problem 1
Given two convex polygons P and Q in the plane, with n and m
edges respectively, find a vector in t ∈ R2 that maximizes the area
of (P + t) ∩ Q, where P + t denotes P translated by t.

1

Motivation and Background

Problem 1
Given two convex polygons P and Q in the plane, with n and m
edges respectively, find a vector in t ∈ R2 that maximizes the area
of (P + t) ∩ Q, where P + t denotes P translated by t.

It can be seen as a formulation of shape matching: the overlap
area is a natural measure of similarity between polygons.

1

Previous Results

Applying a multidimensional version of parametric search
technique (1981) it is not difficult to obtain a
O((n + m) polylog(n + m)) time algorithm.

Improvements:

• O((n + m) log(n + m)) by De Berg et al. (1998) using binary
search and matrix search techniques

• Unbalanced version in O(n + m2 log3 n), which is linear for
small m

• Various attempts using approximation algorithms and
prune-and-search

2

The Result

A randomized (exact) algorithm for Problem 1, running in
O(n + m) expected time. The first improvement in 26 years, and
clearly optimal! But how?

Parametric search reduces the
optimization to:

• implementation of a line oracle
• implementation of a point oracle (evaluating the area of

(P + t) ∩ Q for a given t ∈ R2).

Think of oracles as data structures with sublinear query time.
The clever idea is to reduce the cost of the oracles iteratively.

3

The Result

A randomized (exact) algorithm for Problem 1, running in
O(n + m) expected time. The first improvement in 26 years, and
clearly optimal! But how? Parametric search reduces the
optimization to:

• implementation of a line oracle
• implementation of a point oracle (evaluating the area of

(P + t) ∩ Q for a given t ∈ R2).

Think of oracles as data structures with sublinear query time.
The clever idea is to reduce the cost of the oracles iteratively.

3

The Result

A randomized (exact) algorithm for Problem 1, running in
O(n + m) expected time. The first improvement in 26 years, and
clearly optimal! But how? Parametric search reduces the
optimization to:

• implementation of a line oracle
• implementation of a point oracle (evaluating the area of

(P + t) ∩ Q for a given t ∈ R2).

Think of oracles as data structures with sublinear query time.

The clever idea is to reduce the cost of the oracles iteratively.

3

The Result

A randomized (exact) algorithm for Problem 1, running in
O(n + m) expected time. The first improvement in 26 years, and
clearly optimal! But how? Parametric search reduces the
optimization to:

• implementation of a line oracle
• implementation of a point oracle (evaluating the area of

(P + t) ∩ Q for a given t ∈ R2).

Think of oracles as data structures with sublinear query time.
The clever idea is to reduce the cost of the oracles iteratively.

3

Preliminaries

Preliminaries

Lemma 1√
Area(P + t) ∩ Q is downward concave over all values of t that

yield nonzero overlap of P + t with Q.

4

Preliminaries

• Assume that P and Q have no adjacent edges and both
contain the origin as an interior point.

• We order the edges in counterclockwise order.
• Define N := n + m.
• "With high probability" means "with probability at least

1 − N−Ω(1)".

5

Prefix sums

• Let v1, . . . , vn and v ′
1, . . . , v ′

m be the vertices of P and Q
respectively, listed in counterclockwise order.

• P[vx : vy] is the convex hull set containing the origin, and all
the vertices between vx and vy in counterclockwise order.

6

Fact: we can produce a data structure to report Area(P[vx : vy])
and Area(Q(v ′

x : v ′
y]) with O(N) processing time (the time

needed to construct the structure) and O(1) query time (the time
needed to access the wanted value).

7

Configuration Space

• A polygonal chain [vi : vj] is the union of the consecutive
edges between vi and vj .

• Given two edges e, e′ we define the parallelogram

π(e, e′) = {t ∈ R2 | e + t ∩ e′ ̸= ∅}.

• Given two polygonal chains A ⊆ P and B ⊆ Q we define the
set of all such line segments as

Π(A, B) =
⋃

e∈A,e′∈B
∂π(e, e′)

• Define
↔
Π to be Π(A, B) where each line segment is extended

to a line.

8

Angles

• The angle of an edge e on the boundary of an arbitrary
convex polygon A, denoted θA(e) is the angle
(counterclockwise measured) between a horizontal rightward
ray starting at the minimal vertex of e, and e.

• For any subset X of edges of A define the angle range ΛA(X)
to be the minimal interval in [0, 2π) such that θA(e) ∈ ΛA(X)
for all e ∈ X .

9

Angles

• The angle of an edge e on the boundary of an arbitrary
convex polygon A, denoted θA(e) is the angle
(counterclockwise measured) between a horizontal rightward
ray starting at the minimal vertex of e, and e.

• For any subset X of edges of A define the angle range ΛA(X)
to be the minimal interval in [0, 2π) such that θA(e) ∈ ΛA(X)
for all e ∈ X .

9

The construction

Blocking Scheme

Given a parameter b ∈ N, referred to as the block size, we define a
partition of P and Q into blocks P1, . . . , P⌈N/b⌉ and Q1, . . . Q⌈N/b⌉.

First, sort the set

{θP(e) : e is an edge of P} ∪ {θQ(e) : e is an edge of Q}

in increasing order, and then partition the resulting sequence into
consecutive subsequences S1 . . . S⌈N/b⌉ of length b.

Define Pi as the convex hull of the origin and set of edges of
{e : e is an edge of P, and θP(e) ∈ Si}. Same for Qj .

10

Blocking Scheme

Given a parameter b ∈ N, referred to as the block size, we define a
partition of P and Q into blocks P1, . . . , P⌈N/b⌉ and Q1, . . . Q⌈N/b⌉.

First, sort the set

{θP(e) : e is an edge of P} ∪ {θQ(e) : e is an edge of Q}

in increasing order, and then partition the resulting sequence into
consecutive subsequences S1 . . . S⌈N/b⌉ of length b.

Define Pi as the convex hull of the origin and set of edges of
{e : e is an edge of P, and θP(e) ∈ Si}. Same for Qj .

10

Blocking Scheme

Figure 1: Blocking scheme of two polygons P and Q with N = 20 and
b = 4

11

The Block Structure

Let µ ∈ R+, b ∈ N and T be either a triangle, a line segment or a
point. A (µ, b, T)-block structure is a data structure containing
the following:

1. Access to the vertices of P and Q in counterclockwise order
with O(1) query time, and access to the area prefix sums for
P and Q with O(1) query time.

2. A block size parameter b, which implies blocks
P1, . . . , P⌈N/b⌉ and Q1, . . . Q⌈N/b⌉.

3. A partition of S = ⌈N/b⌉ into subsets Sgood and Sbad with
the requirement that |Sbad | ≤ µ.

4. For every i ∈ Sgood , access in time O(1) to a
constant-complexity quadratic function fi such that
fi(t) = Area((Pi + t) ∩ Q) for all t ∈ T .

12

The Block Structure

Let µ ∈ R+, b ∈ N and T be either a triangle, a line segment or a
point. A (µ, b, T)-block structure is a data structure containing
the following:

1. Access to the vertices of P and Q in counterclockwise order
with O(1) query time, and access to the area prefix sums for
P and Q with O(1) query time.

2. A block size parameter b, which implies blocks
P1, . . . , P⌈N/b⌉ and Q1, . . . Q⌈N/b⌉.

3. A partition of S = ⌈N/b⌉ into subsets Sgood and Sbad with
the requirement that |Sbad | ≤ µ.

4. For every i ∈ Sgood , access in time O(1) to a
constant-complexity quadratic function fi such that
fi(t) = Area((Pi + t) ∩ Q) for all t ∈ T .

12

The Block Structure

Let µ ∈ R+, b ∈ N and T be either a triangle, a line segment or a
point. A (µ, b, T)-block structure is a data structure containing
the following:

1. Access to the vertices of P and Q in counterclockwise order
with O(1) query time, and access to the area prefix sums for
P and Q with O(1) query time.

2. A block size parameter b, which implies blocks
P1, . . . , P⌈N/b⌉ and Q1, . . . Q⌈N/b⌉.

3. A partition of S = ⌈N/b⌉ into subsets Sgood and Sbad with
the requirement that |Sbad | ≤ µ.

4. For every i ∈ Sgood , access in time O(1) to a
constant-complexity quadratic function fi such that
fi(t) = Area((Pi + t) ∩ Q) for all t ∈ T .

12

The Block Structure

Let µ ∈ R+, b ∈ N and T be either a triangle, a line segment or a
point. A (µ, b, T)-block structure is a data structure containing
the following:

1. Access to the vertices of P and Q in counterclockwise order
with O(1) query time, and access to the area prefix sums for
P and Q with O(1) query time.

2. A block size parameter b, which implies blocks
P1, . . . , P⌈N/b⌉ and Q1, . . . Q⌈N/b⌉.

3. A partition of S = ⌈N/b⌉ into subsets Sgood and Sbad with
the requirement that |Sbad | ≤ µ.

4. For every i ∈ Sgood , access in time O(1) to a
constant-complexity quadratic function fi such that
fi(t) = Area((Pi + t) ∩ Q) for all t ∈ T .

12

The Idea

Problem 2 (MaxRegion)
Given a (µ, b, T)-block structure for P and Q, find

max
t∈T

Area((P + t) ∩ Q)

along with the translation t∗ ∈ T realizing the maximum.

13

Cascade

Problem 3 (Cascade)
Given a (µ, b, T)-block structure, parameters µ′ and b′ such that b
divides b′, and triangle or line segment T ′ ⊆ T , either produce a
(µ′, b′, T ′)-block structure or report failure. Failure may be
reported only if the interior of T ′ intersects more than µ′/2 lines
from the set

S :=
⋃

k∈{0,...,⌈N/b′⌉−1}


⋃

(i ,j)∈
[

b′
b

]
×
[

b′
b

]↔
Π
(

Pk· b′
b +i , Qk· b′

b +j

)
where P1, . . . , P⌈N/b⌉ and Q1, . . . Q⌈N/b⌉ are the blocks of P and Q
determined by b.

14

Cascading process

Stage 1: b

Stage 2: b′ = 2b

Stage 3: b′′ = 4b

Each cascade merges consecutive blocks (b → b′ → b′′), reducing
their number geometrically while keeping the total work linear.

15

• Fact: |S| = O(Nb′), i.e. S is near-linear in size for all
b′ = No(1).

• Denote the expected time complexity of the fastest
algorithm for MaxRegion by Td−Max(N, b, µ), where d is
the dimension of the region T .

• Denote the expected time complexity of the fastest
algorithm for Cascade by TCascade(N, b, b′, µ).

16

• Fact: |S| = O(Nb′), i.e. S is near-linear in size for all
b′ = No(1).

• Denote the expected time complexity of the fastest
algorithm for MaxRegion by Td−Max(N, b, µ), where d is
the dimension of the region T .

• Denote the expected time complexity of the fastest
algorithm for Cascade by TCascade(N, b, b′, µ).

16

• Fact: |S| = O(Nb′), i.e. S is near-linear in size for all
b′ = No(1).

• Denote the expected time complexity of the fastest
algorithm for MaxRegion by Td−Max(N, b, µ), where d is
the dimension of the region T .

• Denote the expected time complexity of the fastest
algorithm for Cascade by TCascade(N, b, b′, µ).

16

Calculating the time complexity

Main Lemmas

Lemma 2 (Point Oracle)
For all 2 ≤ b ≤ N, for all µ,

T0−Max(N, b, µ) = O
(

N · log2 b
b + µb

)
.

Lemma 3 (Cascading Subroutine)
For all 2 ≤ b, b′ ≤ N such that b divides b′, for all µ,

TCascade(N, b, b′, µ) = O
(

N · log b′ log b
b + µb2

)
.

17

Reducing to the Point Oracle

Theorem 4
For all 2 ≤ b, b′ ≤ No(1) such that b divides b′, for all µ, µ′ such
that µ′ = N1−o(1),

T2−Max(N, b, µ) =O(log(Nb′/µ′)) · T1−Max(N, b, µ) + O(N0.1+o(1))+
O(1) · TCascade(N, b, b′, µ) + T2−Max(N, b′, µ′)

T1−Max(N, b, µ) =O(log(Nb′/µ′)) · T0−Max(N, b, µ) + O(N0.1+o(1))+
O(1) · TCascade(N, b, b′, µ) + T1−Max(N, b′, µ′)

18

Reducing to the Point Oracle

Theorem 4
For all 2 ≤ b, b′ ≤ No(1) such that b divides b′, for all µ, µ′ such
that µ′ = N1−o(1),

T2−Max(N, b, µ) =O(log(Nb′/µ′)) · T1−Max(N, b, µ) + O(N0.1+o(1))+
O(1) · TCascade(N, b, b′, µ) + T2−Max(N, b′, µ′)

T1−Max(N, b, µ) =O(log(Nb′/µ′)) · T0−Max(N, b, µ) + O(N0.1+o(1))+
O(1) · TCascade(N, b, b′, µ) + T1−Max(N, b′, µ′)

18

Proof of Theorem 4

• Start with a triangle T = T0. Produce a sequence
T0 ⊃ T1 ⊃ T2 ⊃ · · · ⊃ T ′ such that each triangle contains the
optimal translation t∗.

• Invoke Cascade to produce (with high probability) a
(µ′, b′, T ′)-block structure.

• Invoke MaxRegion on the new block structure.

19

Producing T ′

Fact: if an algorithm produces the desired object "with high
probability", then the expected number of attempts in O(1).

20

Producing T ′

Fact: if an algorithm produces the desired object "with high
probability", then the expected number of attempts in O(1).

Definition 5 (ε-cutting)
An ε-cutting for a set X of n hyperplanes in Rd , for any d ≥ 1, is
a partition of Rd into simplices such that the interior of every
simplex intersects at most ε · n hyperplanes of X .

20

Producing T ′

Fact: if an algorithm produces the desired object "with high
probability", then the expected number of attempts in O(1).
Definition 5 (ε-cutting)
An ε-cutting for a set X of n hyperplanes in Rd , for any d ≥ 1, is
a partition of Rd into simplices such that the interior of every
simplex intersects at most ε · n hyperplanes of X .

20

Producing T ′

Fact: if an algorithm produces the desired object "with high
probability", then the expected number of attempts in O(1).
Definition 5 (ε-cutting)
An ε-cutting for a set X of n hyperplanes in Rd , for any d ≥ 1, is
a partition of Rd into simplices such that the interior of every
simplex intersects at most ε · n hyperplanes of X .

20

Lemma 6
Assume we can sample a uniformly random member of X in
expected time O(n0.1). Then in O(n0.1+o(1)) expected time, we
can find a set of O(1) simplices that constitutes an ε-cutting of X
with high probability.

21

How to produce Tx+1 given Tx .

• With high probability produce a 1
2 -cutting for the lines of S

that intersect the interior of Tx .

• Locate the cell of the triangulation that contains t∗. To do
so, check all O(1) triangles:

• For a single triangle X , consider an infinitesimal smaller
copy X − and find the optimal translation restricted to the
edges of X and X −.

• If one of the line segments for X − has a translation realising a
larger area than all of the line segments of X , by concavity of
the area function t∗ ∈ X . Otherwise t∗ ̸∈ X .

22

How to produce Tx+1 given Tx .

• With high probability produce a 1
2 -cutting for the lines of S

that intersect the interior of Tx .
• Locate the cell of the triangulation that contains t∗. To do

so, check all O(1) triangles:

• For a single triangle X , consider an infinitesimal smaller
copy X − and find the optimal translation restricted to the
edges of X and X −.

• If one of the line segments for X − has a translation realising a
larger area than all of the line segments of X , by concavity of
the area function t∗ ∈ X . Otherwise t∗ ̸∈ X .

22

How to produce Tx+1 given Tx .

• With high probability produce a 1
2 -cutting for the lines of S

that intersect the interior of Tx .
• Locate the cell of the triangulation that contains t∗. To do

so, check all O(1) triangles:
• For a single triangle X , consider an infinitesimal smaller

copy X − and find the optimal translation restricted to the
edges of X and X −.

• If one of the line segments for X − has a translation realising a
larger area than all of the line segments of X , by concavity of
the area function t∗ ∈ X . Otherwise t∗ ̸∈ X .

22

How to produce Tx+1 given Tx .

• With high probability produce a 1
2 -cutting for the lines of S

that intersect the interior of Tx .
• Locate the cell of the triangulation that contains t∗. To do

so, check all O(1) triangles:
• For a single triangle X , consider an infinitesimal smaller

copy X − and find the optimal translation restricted to the
edges of X and X −.

• If one of the line segments for X − has a translation realising a
larger area than all of the line segments of X , by concavity of
the area function t∗ ∈ X . Otherwise t∗ ̸∈ X .

22

Proof of Theorem 4

• Start with T = T0. Produce a sequence
T0 ⊃ T1 ⊃ T2 ⊃ · · · ⊃ T ′ such that each triangle contains the
optimal translation t∗.

⇒ O
(
log Nb′

µ′

)
· T1-Max(N, b, µ) + O(N0.1+o(1))

• Invoke Cascade to produce (with high probability) a
(µ′, b′, T ′)-block structure.

⇒ O
(

N log b′ log b
b + µb2

)
.

• Invoke MaxRegion on the new block structure.

⇒ T2-Max(N, b′, µ′).

23

Putting it all Together

Theorem 7
There is an algorithm for Problem 1 running in expected time
O(n + m)

24

Proof of Theorem 7

• Take µ := 20 · N/b3 and µ′ := 20 · N/(b′)3.

• Reduce the problem to an instance of MaxRegion over a
(20 · N/23, 2, T)-block structure.

• The expected running time for Problem 1 is
O(N) + T2−Max(N, 2).

• For any 2 ≤ b, b′ ≤ No(1):

T1−Max(N, b) = O
(

N · log b′ log2 b
b

)
+ T1−Max(N, b′).

• Solve the recursion in two steps: first suppose that
b ≥ (logN)C1 for some constant C1. We will apply the
following result from Toledo.

25

Proof of Theorem 7

• Take µ := 20 · N/b3 and µ′ := 20 · N/(b′)3.
• Reduce the problem to an instance of MaxRegion over a

(20 · N/23, 2, T)-block structure.
• The expected running time for Problem 1 is

O(N) + T2−Max(N, 2).

• For any 2 ≤ b, b′ ≤ No(1):

T1−Max(N, b) = O
(

N · log b′ log2 b
b

)
+ T1−Max(N, b′).

• Solve the recursion in two steps: first suppose that
b ≥ (logN)C1 for some constant C1. We will apply the
following result from Toledo.

25

Proof of Theorem 7

• Take µ := 20 · N/b3 and µ′ := 20 · N/(b′)3.
• Reduce the problem to an instance of MaxRegion over a

(20 · N/23, 2, T)-block structure.
• The expected running time for Problem 1 is

O(N) + T2−Max(N, 2).
• For any 2 ≤ b, b′ ≤ No(1):

T1−Max(N, b) = O
(

N · log b′ log2 b
b

)
+ T1−Max(N, b′).

• Solve the recursion in two steps: first suppose that
b ≥ (logN)C1 for some constant C1. We will apply the
following result from Toledo.

25

Proof of Theorem 7

• Take µ := 20 · N/b3 and µ′ := 20 · N/(b′)3.
• Reduce the problem to an instance of MaxRegion over a

(20 · N/23, 2, T)-block structure.
• The expected running time for Problem 1 is

O(N) + T2−Max(N, 2).
• For any 2 ≤ b, b′ ≤ No(1):

T1−Max(N, b) = O
(

N · log b′ log2 b
b

)
+ T1−Max(N, b′).

• Solve the recursion in two steps: first suppose that
b ≥ (logN)C1 for some constant C1. We will apply the
following result from Toledo.

25

Parametric Search (Megiddo, Toledo, Cole)

• Goal: find the optimal parameter t∗ where a concave function
F (t) attains its maximum.

• Assume we can evaluate F (t) efficiently — this is the
evaluation oracle (time T0).

• We also have a parallel version of this oracle (time Tp, using
P processors).

• Parametric search simulates the parallel algorithm
sequentially, resolving comparisons that depend on t∗ via
oracle calls.

• General running time in fixed dimension d :

O
(
T0(Tp log P)2d −1

)
26

Parametric Search (Megiddo, Toledo, Cole)

• In our case (d = 1):
• T0 = cost of the point oracle T0-Max(N, b, µ),
• ⇒ T1-Max(N, b) = O(N/ log N).

27

Proof of Theorem 7

• In the second step we solve a geometric series and setting
b′ = 2b:

T1−Max

(
N · log3 b

b + N
log N

)

• Analogously, for 2 ≤ b, b′ ≤ No(1):

T2−Max(N, b) = O
(

N · log b′ log3 b
b + N · log b′

logN

)
+T2−Max(N, b′)

• Again if we take b′ = 2b:

T2−Max(N, b) = O
(

N · log4 b
b + N · log2 log N

logN

)
• T2−Max(N, 2) = O(N) and the theorem follows.

28

Proof of Theorem 7

• In the second step we solve a geometric series and setting
b′ = 2b:

T1−Max

(
N · log3 b

b + N
log N

)

• Analogously, for 2 ≤ b, b′ ≤ No(1):

T2−Max(N, b) = O
(

N · log b′ log3 b
b + N · log b′

logN

)
+T2−Max(N, b′)

• Again if we take b′ = 2b:

T2−Max(N, b) = O
(

N · log4 b
b + N · log2 log N

logN

)
• T2−Max(N, 2) = O(N) and the theorem follows.

28

Proof of Theorem 7

• In the second step we solve a geometric series and setting
b′ = 2b:

T1−Max

(
N · log3 b

b + N
log N

)

• Analogously, for 2 ≤ b, b′ ≤ No(1):

T2−Max(N, b) = O
(

N · log b′ log3 b
b + N · log b′

logN

)
+T2−Max(N, b′)

• Again if we take b′ = 2b:

T2−Max(N, b) = O
(

N · log4 b
b + N · log2 log N

logN

)
• T2−Max(N, 2) = O(N) and the theorem follows.

28

Constructing the Cascading Subroutine

Lemma (Cascading Subroutine)
For all 2 ≤ b, b′ ≤ N such that b divides b′, for all µ,

TCascade(N, b, b′, µ) = O
(

N · log b′ log b
b + µb2

)
.

29

First we need some tools to help classify the new blocks.

Lemma 8
Let X and Y be any two polygonal chains of P and Q, respectively.
If ΛA(X) ∩ Λ(Y) = ∅, then X and Y intersect at most twice and
we can find the intesection point(s) in time O(log|X | log|Y |).

Lemma 9
Let X and Y be polygonal chains of P and Q, respectively, and T ′

be a triangle or a line segment. If ΛP(X) ∩ ΛQ(Y) = ∅, then we
can determine if some line segment in Π(X , Y) intersects the
interior of T ′ in time O(log|X | log|Y |).

30

Proof of Lemma 3

• Fact: if T ′ is contained in a cell of Π(P, Q), then there is a
constant complexity quadratic function calculating the area.

• Define Ck = {(k − 1) · b′

b + 1, . . . , k · b′

b }, i.e. P ′
k = ⋃

i∈Ck
Pi

and Q′
k = ⋃

j∈Ck
Qj . Denote by fk(t) = Area((P ′

k + t) ∩ Q′
k).

fk(t) =
∑

(i ,j)∈Ck×Ck

Area
(
(Pi + t) ∩ Qj

)
=

∑
i∈Ck

Area
(
(Pi + t) ∩ Qi

)
+

∑
(i ,j)∈Ck×Ck

i ̸=j

Area
(
(Pi + t) ∩ Qj

)
,

• Solve the two summations separately.

31

Proof of Lemma 3

• Fact: if T ′ is contained in a cell of Π(P, Q), then there is a
constant complexity quadratic function calculating the area.

• Define Ck = {(k − 1) · b′

b + 1, . . . , k · b′

b }, i.e. P ′
k = ⋃

i∈Ck
Pi

and Q′
k = ⋃

j∈Ck
Qj . Denote by fk(t) = Area((P ′

k + t) ∩ Q′
k).

fk(t) =
∑

(i ,j)∈Ck×Ck

Area
(
(Pi + t) ∩ Qj

)
=

∑
i∈Ck

Area
(
(Pi + t) ∩ Qi

)
+

∑
(i ,j)∈Ck×Ck

i ̸=j

Area
(
(Pi + t) ∩ Qj

)
,

• Solve the two summations separately.

31

Proof of Lemma 3

• Fact: if T ′ is contained in a cell of Π(P, Q), then there is a
constant complexity quadratic function calculating the area.

• Define Ck = {(k − 1) · b′

b + 1, . . . , k · b′

b }, i.e. P ′
k = ⋃

i∈Ck
Pi

and Q′
k = ⋃

j∈Ck
Qj . Denote by fk(t) = Area((P ′

k + t) ∩ Q′
k).

fk(t) =
∑

(i ,j)∈Ck×Ck

Area
(
(Pi + t) ∩ Qj

)
=

∑
i∈Ck

Area
(
(Pi + t) ∩ Qi

)
+

∑
(i ,j)∈Ck×Ck

i ̸=j

Area
(
(Pi + t) ∩ Qj

)
,

• Solve the two summations separately.

31

First Summation

• Read each function Area((Pi + t) ∩ Qi) with i ∈ Sgood . This
takes O(b′

b) time for each k, or O(N/b) for all k.

• For each i in Sbad check whether T ′ lies in a single cell of
Π(Pi , Qi) in time O(b2). If this is not the case for some i ,
add the index k to Sbad . Total time: O(µb2).

32

First Summation

• Read each function Area((Pi + t) ∩ Qi) with i ∈ Sgood . This
takes O(b′

b) time for each k, or O(N/b) for all k.
• For each i in Sbad check whether T ′ lies in a single cell of

Π(Pi , Qi) in time O(b2). If this is not the case for some i ,
add the index k to Sbad . Total time: O(µb2).

32

Second Summation

• Rewrite the sum as:∑
i∈Ck

Area
(
(Pi + t) ∩ Q−

i ,k

)
+
∑
i∈Ck

Area
(
(Pi + t) ∩ Q+

i ,k

)
,

where
Q−

i ,k =
⋃

j∈Ck
j<i

Qj , Q+
i ,k =

⋃
j∈Ck
j>i

Qj .

are convex polygons.

• Λ(EP(Pi)) ∩ Λ(EQ(Q−
i ,k)) = ∅. So break Pi + t and Q−

i ,k into
pieces that satisfy the preconditions of Lemma 8 and
Lemma 9.

• In time O(log b log b′) we determine if T ′ lies in a single cell
of Π(Pi , Q−

i ,k). If it happens, calculate the functions.
Otherwise add k to Sbad .

33

Second Summation

• Rewrite the sum as:∑
i∈Ck

Area
(
(Pi + t) ∩ Q−

i ,k

)
+
∑
i∈Ck

Area
(
(Pi + t) ∩ Q+

i ,k

)
,

where
Q−

i ,k =
⋃

j∈Ck
j<i

Qj , Q+
i ,k =

⋃
j∈Ck
j>i

Qj .

are convex polygons.
• Λ(EP(Pi)) ∩ Λ(EQ(Q−

i ,k)) = ∅. So break Pi + t and Q−
i ,k into

pieces that satisfy the preconditions of Lemma 8 and
Lemma 9.

• In time O(log b log b′) we determine if T ′ lies in a single cell
of Π(Pi , Q−

i ,k). If it happens, calculate the functions.
Otherwise add k to Sbad .

33

Second Summation

• Rewrite the sum as:∑
i∈Ck

Area
(
(Pi + t) ∩ Q−

i ,k

)
+
∑
i∈Ck

Area
(
(Pi + t) ∩ Q+

i ,k

)
,

where
Q−

i ,k =
⋃

j∈Ck
j<i

Qj , Q+
i ,k =

⋃
j∈Ck
j>i

Qj .

are convex polygons.
• Λ(EP(Pi)) ∩ Λ(EQ(Q−

i ,k)) = ∅. So break Pi + t and Q−
i ,k into

pieces that satisfy the preconditions of Lemma 8 and
Lemma 9.

• In time O(log b log b′) we determine if T ′ lies in a single cell
of Π(Pi , Q−

i ,k). If it happens, calculate the functions.
Otherwise add k to Sbad .

33

Conclusion of the proof

• By summing over i and k gives total time O(N · log b log b′

b).

• Each line in S corresponds to at most two k’s in Sbad .
• Thus if |Sbad | > µ, then more than µ/2 lines of S intersect

T ′.

34

Conclusion of the proof

• By summing over i and k gives total time O(N · log b log b′

b).
• Each line in S corresponds to at most two k’s in Sbad .

• Thus if |Sbad | > µ, then more than µ/2 lines of S intersect
T ′.

34

Conclusion of the proof

• By summing over i and k gives total time O(N · log b log b′

b).
• Each line in S corresponds to at most two k’s in Sbad .
• Thus if |Sbad | > µ, then more than µ/2 lines of S intersect

T ′.

34

Thank you for the attention

	Introduction
	Preliminaries
	The construction
	Calculating the time complexity
	Thank you for the attention

