Timothy M. Chan, Isaac M. Hair: A Linear Time for the Maximum Overlap of Two Convex Polygons Under Translation (SoCG 2025)

presented by Giuseppe Pino

PhD Students Seminar, 13 November 2025

Problem 1. Given two convex polygons P and Q in the plane, with n and m edges respectively, find a vector $t \in \mathbb{R}^2$ that maximizes the area of $(P+t) \cap Q$, where P+t denotes P translated by t.

1 Preliminaries

Lemma 1. $\sqrt{\operatorname{Area}(P+t) \cap Q}$ is downward concave over all values of t that yield nonzero overlap of P+t with Q.

Definition 1 (Configuration Space). A polygonal chain $[v_i : v_j]$ for a polygon P is the union of consecutive edges between v_i and v_j .

Given two edges e, e' we define the parallelogram

$$\pi(e, e') = \{ t \in \mathbb{R}^2 \mid e + t \cap e' \neq \emptyset \}.$$

Given two polygonal chains $A \subseteq P$ and $B \subseteq Q$ we define the set of all such line segments as

$$\Pi(A,B) = \bigcup_{e \in A, e' \in B} \partial \pi(e,e')$$

and define Π to be $\Pi(A, B)$ where each line segment is extended to a line.

Definition 2 (Blocking Scheme). The angle of an edge e on the boundary of an arbitrary convex polygon A, denoted $\theta_A(e)$ is the angle (counterclockwise measured) between a horizontal rightward ray and e. For any subset X of edges of A define the angle range $\Lambda_A(X)$ to be the minimal interval in $[0, 2\pi)$ such that $\theta_A(e) \in \Lambda_A(X)$ for all $e \in X$. Given a parameter $b \in \mathbb{N}$, referred to as the block size, we define a partition of P and Q into blocks $P_1, \ldots, P_{\lceil N/b \rceil}$ and $Q_1, \ldots Q_{\lceil N/b \rceil}$. First, sort the set

$$\{\theta_P(e): e \text{ is an edge of } P\} \cup \{\theta_Q(e): e \text{ is an edge of } Q\}$$

in increasing order, and then partition the resulting sequence into consecutive subsequences $S_1 \dots S_{|N/b|}$ of length b.

Definition 3 (The Block Structure). Let $\mu \in \mathbb{R}^+$, $b \in \mathbb{N}$ and \mathcal{T} be either a triangle, a line segment or a point. A (μ, b, \mathcal{T}) -block structure is a data structure containing the following:

- 1. Access to the vertices of P and Q in counterclockwise order with $\mathcal{O}(1)$ query time, and access to the area prefix sums for P and Q with $\mathcal{O}(1)$ query time.
- 2. A block size parameter b, which implies blocks $P_1, \ldots, P_{\lceil N/b \rceil}$ and $Q_1, \ldots, Q_{\lceil N/b \rceil}$.
- 3. A partition of $S = \lceil N/b \rceil$ into subsets S_{good} and S_{bad} with the requirement that $|S_{bad}| \leq \mu$.
- 4. For every $i \in S_{good}$, access in time $\mathcal{O}(1)$ to a constant-complexity quadratic function f_i such that $f_i(t) = \operatorname{Area}((P_i + t) \cap Q)$ for all $t \in \mathcal{T}$.

2 Subroutines

Problem 2 (MAXREGION). Given a (μ, b, \mathcal{T}) -block structure for P and Q, find

$$\max_{t \in \mathcal{T}} \operatorname{Area}((P+t) \cap Q)$$

along with the translation $t^* \in \mathcal{T}$ realizing the maximum.

Problem 3 (CASCADE). Given a (μ, b, \mathcal{T}) -block structure, parameters μ' and b' such that b divides b', and triangle or line segment $\mathcal{T}' \subseteq \mathcal{T}$, either produce a (μ', b', \mathcal{T}') -block structure or report failure. Failure may be reported only if the interior of \mathcal{T}' intersects more than $\mu'/2$ lines from the set

$$\mathcal{S} := \bigcup_{k \in \{0, \dots, \lceil N/b' \rceil - 1\}} \left(\bigcup_{(i,j) \in \left[\frac{b'}{b}\right] \times \left[\frac{b'}{b}\right]} \overset{\leftrightarrow}{\Pi} \left(P_{k \cdot \frac{b'}{b} + i}, Q_{k \cdot \frac{b'}{b} + j} \right) \right)$$

where $P_1, \ldots, P_{\lceil N/b \rceil}$ and $Q_1, \ldots Q_{\lceil N/b \rceil}$ are the blocks of P and Q determined by b.

We denote the expected time complexity of the fastest algorithm for MAXREGION by $T_{d-\text{MAX}}(N, b, \mu)$, where d is the dimension of the region \mathcal{T} . We write the expected time complexity of the fastest algorithm for CASCADE as $T_{\text{CASCADE}}(N, b, b', \mu)$.

Lemma 2 (Point Oracle). For all $2 \le b \le N$, for all μ ,

$$T_{0-\mathrm{Max}}(N,b,\mu) = \mathcal{O}\left(N \cdot \frac{\log^2 b}{b} + \mu b\right).$$

Lemma 3 (Cascading Subroutine). For all $2 \le b, b' \le N$ such that b divides b', for all μ ,

$$T_{\text{CASCADE}}(N, b, b', \mu) = \mathcal{O}\left(N \cdot \frac{\log b' \log b}{b} + \mu b^2\right).$$

3 The Algorithm

Theorem 4. For all $2 \le b, b' \le N^{o(1)}$ such that b divides b', for all μ, μ' such that $\mu' = N^{1-o(1)}$,

$$T_{2-\text{MAX}}(N, b, \mu) = \mathcal{O}(\log(Nb'/\mu')) \cdot T_{1-\text{MAX}}(N, b, \mu) + \mathcal{O}(N^{0.1+o(1)}) + \mathcal{O}(1) \cdot T_{\text{CASCADE}}(N, b, b', \mu) + T_{2-\text{MAX}}(N, b', \mu')$$

$$T_{1-\text{MAX}}(N, b, \mu) = \mathcal{O}(\log(Nb'/\mu')) \cdot T_{0-\text{MAX}}(N, b, \mu) + \mathcal{O}(N^{0.1+o(1)}) + \mathcal{O}(1) \cdot T_{\text{CASCADE}}(N, b, b', \mu) + T_{1-\text{MAX}}(N, b', \mu')$$

Definition 5 (ε -cutting). An ε -cutting for a set X of n hyperplanes in \mathbb{R}^d , for any $d \geq 1$, is a partition of \mathbb{R}^d into simplices such that the interior of every simplex intersects at most $\varepsilon \cdot n$ hyperplanes of X.

Lemma 6. Assume we can sample a uniformly random member of X in expected time $\mathcal{O}(n^{0.1})$. Then in $\mathcal{O}(n^{0.1+o(1)})$ expected time, we can find a set of $\mathcal{O}(1)$ simplices that constitutes an ε -cutting of X with high probability.

Theorem 7. There is an algorithm for Problem 1 running in expected time $\mathcal{O}(n+m)$.

4 The Cascading Subroutine

Lemma 8. Let X and Y be any two polygonal chains of P and Q, respectively. If $\Lambda_A(X) \cap \Lambda(Y) = \emptyset$, then X and Y intersect at most twice and we can find the intersection point(s) in time $\mathcal{O}(\log|X|\log|Y|)$.

Lemma 9. Let X and Y be polygonal chains of P and Q, respectively, and \mathcal{T}' be a triangle or a line segment. If $\Lambda_P(X) \cap \Lambda_Q(Y) = \emptyset$, then we can determine if some line segment in $\Pi(X,Y)$ intersects the interior of \mathcal{T}' in time $\mathcal{O}(\log |X| \log |Y|)$.