The sandglass conjecture beyond cancellative pairs (EuroCG 25')

Authors: Adva Mond, Victor Souza, Leo Versteegen

Presented by Koki Furukawa 27 November 2025

Definition 1 (Recovering pair).

Given a finite set X and two families $A, B \subseteq 2^X$, we say that (A, B) is a **recovering pair** over X if for all $A_1, A_2 \in A$ and $B_1, B_2 \in B$,

$$A_1 \backslash B_1 = A_2 \backslash B_2 \Longrightarrow A_1 = A_2$$

 $B_1 \backslash A_1 = B_2 \backslash A_2 \Longrightarrow B_1 = B_2.$

Example 1.

Fix $S \subseteq X$, take $A = \{A : S \subseteq A\}$, and $B = \{B : B \subseteq S\}$. Then, the pair $(\{A^c : A \in A\}, B)$ is recovering pair over X.

Conjecture 1 (The Sandglass Conjecture (posed by Ahlswede and Simonyi in 1994). If $(\mathcal{A}, \mathcal{B})$ is a recovering pair over [n], then $|\mathcal{A}||\mathcal{B}| \leq 2^n$.

Definition 2 (Optimal rate).

$$\mu_{rec} := \lim_{n \to \infty} \max\{(|\mathcal{A}||\mathcal{B}|)^{1/n} : (\mathcal{A}, \mathcal{B}) \text{ is a recovering pair over } [n]\},$$

$$\mu_{can} := \lim_{n \to \infty} \max\{(|\mathcal{A}||\mathcal{B}|)^{1/n} : (\mathcal{A}, \mathcal{B}) \text{ is a cancellative pair over } [n]\}.$$

Theorem 1 (Main Theorem).

Let $(\mathcal{A}, \mathcal{B})$ be a recovering pair over [n], then

$$|\mathcal{A}||\mathcal{B}| \le \max\{2.2499, \theta^{\alpha} \cdot \mu_{can}^{1-\alpha}\}^n$$

where $\alpha = 0.27$ and $\theta = 2.222$.

Corollary 1 (New upper bound (as a corollary of the Main Theorem)). If $(\mathcal{A}, \mathcal{B})$ is a recovering pair over [n], then $|\mathcal{A}||\mathcal{B}| \leq 2.2557^n$.

Definition 3 (Cancellative pair and k-uniform pair).

Given a finite set X and two families $\mathcal{A}, \mathcal{B} \subseteq 2^X$, we say that $(\mathcal{A}, \mathcal{B})$ is a **cancellative pair** over X if for all $A_1, A_2 \in \mathcal{A}$ and $B_1, B_2 \in \mathcal{B}$,

$$A_1 \backslash B_1 = A_2 \backslash B_1 \Longrightarrow A_1 = A_2$$

 $B_1 \backslash A_1 = B_2 \backslash A_1 \Longrightarrow B_1 = B_2.$

We say that a pair (A, B) over a set [n] is k-uniform if |A| = |B| = k for every $A \in A$ and every $B \in B$.

Lemma 1.

Suppose that for all $n, k \in \mathbb{N}$ with $k \leq n$, every k-uniform recovering pair over n-element ground set satisfies $|\mathcal{A}||\mathcal{B}| \leq \mu^n$ for some constant $\mu > 0$. Then the same inequality holds for any (not necessarily uniform) recovering pair.

Definition 4 (Filtered pair).

For the two familes $\mathcal{A}, \mathcal{B} \subseteq 2^X$, and for given $P \subseteq S \subseteq C \subset X$, the **filtered pair** $(\mathcal{A}_{C,S,P}, \mathcal{B}_{C,S})$ of the pair $(\mathcal{A}, \mathcal{B})$ is defined such that

$$\mathcal{A}_{C,S,P} := \{ A \setminus C : A \in \mathcal{A}, A \cap S = P \},$$

$$\mathcal{B}_{C,S} := \{ B \setminus C : B \in \mathcal{B}, C \setminus B = S \}.$$

Proposition 1.

Let (A, B) be a cancellative pair over a set X. Then for any sets $P \subseteq S \subseteq C \subset X$ such that there is $B \in B$ with $S = C \setminus B$, the filtered pair $(A_{C,S,P}, B_{C,S})$ satisfies

$$(|\mathcal{A}_{C,S,P}| =) |\{A \setminus C : A \in \mathcal{A}, A \cap S = P\}| = |\{A \in \mathcal{A} : A \cap S = P\}|,$$

 $(|\mathcal{B}_{C,S}| =) |\{B \setminus C : B \in \mathcal{B}, C \setminus B = S\}| = |\{B \in \mathcal{B} : C \setminus B = S\}|.$

Proposition 2.

Let (A, B) be a recovering pair over a set X. Then for any sets $P \subseteq S \subseteq C \subseteq X$, the filtered pair $(A_{C,S,P}, \mathcal{B}_{C,S})$ is cancellative over $X \setminus C$.

Define $\mathcal{F}_i := \{F \in \mathcal{F} : i \in F\}$, $\mathcal{F}'_i := \{F \in \mathcal{F} : i \notin F\}$ for a family \mathcal{F} of subsets of X and $i \in X$ and we denote the size of each restriction by $a_i := |\mathcal{A}_i|/|\mathcal{A}|$, $a'_i := |\mathcal{A}'_i|/|\mathcal{A}|$, $b_i := |\mathcal{B}_i|/|\mathcal{B}|$, $b'_i := |\mathcal{B}'_i|/|\mathcal{B}|$.

Proposition 3 ($A_{C,S,P}$ is reasonably sized).

Let (A, B) be a recovering pair over X and let $S \subseteq C \subseteq X$ be such that $S = C \setminus B$ for some $B \in B$. Then there exists a subset $P \subseteq S$ such that

$$\log_2(|\mathcal{A}_{C,S,P}|/|\mathcal{A}|) \ge -\sum_{i \in S} h(a_i),$$

where $h(p) := -p \log p - (1-p) \log(1-p)$.

Proposition 4.

Let (A, B) be a k-uniform recovering pair over X and suppose that there exists a constant θ such that for every $A \in A$, $B \in B$ and $P \subseteq A \setminus B$ we have $|A_{A,A \setminus B,P}| |B_{A,A \setminus B}| \leq \theta^{-k} |A| |B|$. Then we have

$$\log_2 |\mathcal{A}| \le \sum_{i \in X} f(a_i, b_i, \theta),$$

where $f(x, y, t) := x(1 - y)h(x) + h(x(1 - y)) - x \log_2 t$.

Corollary 2.

Let (A, B) be a k-uniform recovering pair over X and suppose that there exists a constant θ such that for every $A \in A$, $B \in B$ and for every $P_1 \subseteq A \setminus B$ and $P_2 \subseteq B \setminus A$ we have $|A_{A,A \setminus B,P_1}||B_{A,A \setminus B}| \le \theta^{-k}|A||B|$, and $|B_{B,B \setminus A,P_2}||A_{B,B \setminus A}| \le \theta^{-k}|A||B|$. Then

$$\log_2 |\mathcal{A}||\mathcal{B}| \le \sum_{i \in X} g(a_i, b_i, \theta),$$

where g(x, y, t) := f(x, y, t) + f(y, x, t).

Claim 1.

For $x, y \in (0, 1)$ and $\theta = 2.222$ we have $g(x, y, \theta) \le \log_2(2.2499)$.