
Ryan Williams: Simulating Time with Square-Root Space

James Cook, Ian Mertz: Tree Evaluation Is In Space O(log n log log n)

presented by Petr Chmel

Theorem 1 (Simulating time in square-root space).
For multi-tape Turing machines and every function t(n) ≥ n,

TIME[t(n)] ⊆ SPACE[
√
t(n) log t(n)].

Theorem 2 (Simulating time in square-root space, talk version).
For multi-tape Turing machines and every function t(n) ≥ n2,

TIME[t(n)] ⊆ SPACE[
√
t(n) log t(n)].

Proposition 1 (Obtaining oblivious Turing machines; Hennie, Stearns’66, Pippenger, Fischer’79, Fortnow,
Lipton, van Melkebeek, Viglas’05).
For every time-t(n) multitape Turing machine M , there is an equivalent time-T (n) two-tape Turing machine
M ′ which is oblivious, with T (n) ≤ O(t(n) log t(n)). Furthermore, given n and i ∈ [T (n)] specified in
O(log t(n)) bits, the two head positions of M ′ on a length-n input at time step i can be computed in
poly(log t(n)) time.

Corollary 1 (Separation of linear space and almost-quadratic time).
For space constructible s(n) ≥ n and all ε > 0, SPACE[s(n)] ̸⊂ TIME[s(n)2−ε].

Corollary 2 (A specific language requiring almost-quadratic time).
The language L = {⟨M,x, 1k⟩ | |M | ≤ k and M(x) halts in space k} requires n2−ε time to solve on a
multitape Turing machine, for every ε > 0.

Part 2: Tree Evaluation

Definition 1 (Tree Evaluation).
Tree Evaluation on trees of bit-length b, maximum height h, and fan-in d is the following problem. On
input, you are given a rooted d-ary tree of maximum height h such that each leaf is labelled by a bit-string
of length b, and every internal node u has a function fu : {0, 1}d·b → {0, 1}b. The goal is to compute the
value of the tree at the root.

Theorem 3 (Tree Evaluation in small space).
Tree Evaluation on trees of bit-length b, maximum height h, and fan-in at most d, can be computed in
O(d · b+ h log(d · b)) space.

Theorem 4 (Tree Evaluation in small space, talk version).
Tree Evaluation on trees of bit-length b, maximum height h, and fan-in 2, can be computed in O((b +
h) · log b) space.

Definition 2 (Register program).
A register program over an alphabet Σ consists of a collection of memory locations R = {R1, . . . , Rs}, called
registers, each of which can hold one element from Σ, and an ordered list of instructions in the form of
updates to some register Ri based on the current values of the register and an input x ∈ {0, 1}n.

Definition 3 (Clean computation).
Let R be a ring and let f be a function whose output can be represented in R. A register program over the
alphabet R with s registers cleanly computes f into a register Ro if for all possible x1, . . . , xn ∈ {0, 1}b and
τ1, . . . , τs ∈ R, if the program is run after initializing each register Ri = τi, then at the end of the execution,
Ro = τo + f(x1, . . . , xn) and Ri = τi for all i ̸= o.

Definition 4 (Inverse clean register program).
If P is a register program that cleanly computes f(x1, . . . , xn), an inverse to P is any program P−1 that
cleanly computes −f(x1, . . . , xn).

Observation 1 (Inverse clean register programs exist).
For any clean register program P , its inverse exists.

Definition 5 (Uniform register programs).
A family of register programs P = {Pn}n∈N is space c(n)-uniform if there is an algorithm using space c(n)
which, given (t, x) and access to an array of registers, performs the t-th instruction of Pn on input x ∈ {0, 1}n.

Proposition 2 (Register programs and space complexity).
For n ∈ N, let c := c(n), s := s(n), t := t(n) ∈ N, and let R := Rn be a ring. Let f := fn be a
Boolean function on n variables and let P := Pn be a space c-uniform register program with s registers
over R and which has t instructions in total, that cleanly computes f . Then f can be computed in space
O(c+ s log |R|+ log t).

Definition 6 (Root of unity).
An element ω of a field K is a root of unity of order m if ωm = 1. It is a primitive root of unity, if, moreover,
ωk ̸= 1 for all integer 0 < k < m.

Proposition 3 (Roots of unity are useful).
Let K be a finite field and let ω be a primitive root of unity of order m in K. Then, for all 0 < b < m,∑m

j=1 ω
jb = 0. (Note that for b = 0, the sum equals −1.)

Lemma 1 (Roots of unity are really useful).
Let K be a finite field, let m = |K| − 1 and let ω be a primitive root of unity of order m in K. Let d < m
and let τi, xi be elements of K for i ∈ [d]. Then

m∑
j=1

d∏
i=1

(ωjτi + xi) = −1 ·
d∏

i=1

xi.

Moreover, let q : Kn → K be a degree-d polynomial over K. Then

m∑
j=1

−1 · q(ωjτ1 + x1, . . . , ω
jτn + xn) = q(x).

Lemma 2 (Clean computation of one node of TEP).
Let K be a finite field such that m := |K| − 1 > 2b. Let u be a non-leaf node in the instance of Tree
Evaluation with bit-length b and height h. Let Pℓ, Pr be register programs which cleanly compute the values
vℓ, vr ∈ {0, 1}b at u’s children into registers Rℓ, Rr ∈ Kb, respectively, and let P−1

ℓ , P−1
r be their inverses.

Let fu : {0, 1}2b → {0, 1}b be the function at node u.
Then there exists a register program Pu that cleanly computes vu = f(vℓ, vr) ∈ {0, 1}b into registers

Ru ∈ Kb, as well as an inverse program P−1
u . Both Pu, P

−1
u consist of m copies each of Pℓ, Pr, P

−1
ℓ , P−1

r and
5mb other instructions. Additionally, both programs only use registers Ru plus any other registers used by
Pℓ, Pr.

