Ryan Williams: Simulating Time with Square-Root Space

James Cook, Ian Mertz: Tree Evaluation Is In Space O(lognloglogn)
presented by Petr Chmel

Theorem 1 (Simulating time in square-root space).
For multi-tape Turing machines and every function t(n) > n,

TIME[t(n)] € SPACE[\/t(n)logt(n)].

Theorem 2 (Simulating time in square-root space, talk version).
For multi-tape Turing machines and every function t(n) > n?,

TIME[t(n)] € SPACE[/t(n) logt(n)].

Proposition 1 (Obtaining oblivious Turing machines; Hennie, Stearns’66, Pippenger, Fischer’79, Fortnow,
Lipton, van Melkebeek, Viglas’05).

For every time-t(n) multitape Turing machine M, there is an equivalent time-T'(n) two-tape Turing machine
M’ which is oblivious, with T'(n) < O(t(n)logt(n)). Furthermore, given n and i € [T(n)] specified in
O(logt(n)) bits, the two head positions of M’ on a length-n input at time step 4 can be computed in
poly(logt(n)) time.

Corollary 1 (Separation of linear space and almost-quadratic time).
For space constructible s(n) > n and all € > 0, SPACE[s(n)] ¢ TIME[s(n)?>~¢].

Corollary 2 (A specific language requiring almost-quadratic time).
The language L = {(M,x,1%¥) | |M| < k and M(z) halts in space k} requires n?~¢ time to solve on a
multitape Turing machine, for every € > 0.

Part 2: Tree Evaluation

Definition 1 (TREE EVALUATION).

TREE EVALUATION on trees of bit-length b, maximum height h, and fan-in d is the following problem. On
input, you are given a rooted d-ary tree of maximum height h such that each leaf is labelled by a bit-string
of length b, and every internal node u has a function f, : {0,1}%* — {0,1}*. The goal is to compute the
value of the tree at the root.

Theorem 3 (Tree Evaluation in small space).
TREE EVALUATION on trees of bit-length b, maximum height h, and fan-in at most d, can be computed in
O(d - b+ hlog(d-b)) space.

Theorem 4 (Tree Evaluation in small space, talk version).
TREE EVALUATION on trees of bit-length b, maximum height h, and fan-in 2, can be computed in O((b +
h) - log b) space.

Definition 2 (Register program).

A register program over an alphabet ¥ consists of a collection of memory locations R = {Ry, ..., R}, called
registers, each of which can hold one element from ¥, and an ordered list of instructions in the form of
updates to some register R; based on the current values of the register and an input « € {0,1}"™.

Definition 3 (Clean computation).

Let R be a ring and let f be a function whose output can be represented in R. A register program over the
alphabet R with s registers cleanly computes f into a register R, if for all possible x1, ..., z, € {0,1}* and
T,...,Ts € R, if the program is run after initializing each register R; = 7;, then at the end of the execution,
R, =70+ f(x1,...,2,) and R; = 7; for all ¢ # o.

Definition 4 (Inverse clean register program).
If P is a register program that cleanly computes f(z1,...,7,), an inverse to P is any program P~! that
cleanly computes —f(z1,...,2p).

Observation 1 (Inverse clean register programs exist).
For any clean register program P, its inverse exists.

Definition 5 (Uniform register programs).
A family of register programs P = {P, },cn is space ¢(n)-uniform if there is an algorithm using space ¢(n)
which, given (¢, z) and access to an array of registers, performs the ¢-th instruction of P, on input « € {0,1}".

Proposition 2 (Register programs and space complexity).

For n € N, let ¢ := ¢(n),s := s(n),t == t(n) € N, and let R := R,, be a ring. Let f := f, be a
Boolean function on n variables and let P := P, be a space c-uniform register program with s registers
over R and which has ¢ instructions in total, that cleanly computes f. Then f can be computed in space
O(c+ slog |R]| + logt).

Definition 6 (Root of unity).
An element w of a field K is a root of unity of order m if w™ = 1. It is a primitive root of unity, if, moreover,
wF #£ 1 for all integer 0 < k < m.

Proposition 3 (Roots of unity are useful).
Let K be a finite field and let w be a primitive root of unity of order m in K. Then, for all 0 < b < m,

Z;ﬁ:l wI® = 0. (Note that for b = 0, the sum equals —1.)

Lemma 1 (Roots of unity are really useful).
Let K be a finite field, let m = || — 1 and let w be a primitive root of unity of order m in K. Let d < m
and let 7, z; be elements of K for i € [d]. Then

m d

d
ZH(iji +z,)=-1- Hxl

j=1i=1

Moreover, let ¢ : K™ — K be a degree-d polynomial over K. Then
m
Z —1-qwn +x1,...,0' 7 + x,) = q(x).
j=1

Lemma 2 (Clean computation of one node of TEP).
Let K be a finite field such that m := || — 1 > 2b. Let u be a non-leaf node in the instance of Tree
Evaluation with bit-length b and height h. Let Py, P, be register programs which cleanly compute the values
vg, v, € {0,1}° at w’s children into registers Ry, R, € K°, respectively, and let P[l,Pfl be their inverses.
Let f, :{0,1}?* — {0,1}" be the function at node u.

Then there exists a register program P, that cleanly computes v, = f(vg,v,) € {0,1}" into registers
R, € K°, as well as an inverse program P, !. Both P,, P! consist of m copies each of P, P,, P[l, P! and
5mb other instructions. Additionally, both programs only use registers R,, plus any other registers used by
Py, P,.

