Ryan Williams: Simulating Time with Square-Root Space

James Cook, Ian Mertz: Tree Evaluation Is In Space $\mathcal{O}(\log n \log \log n)$

presented by Petr Chmel

Theorem 1 (Simulating time in square-root space).

For multi-tape Turing machines and every function $t(n) \geq n$,

$$TIME[t(n)] \subseteq SPACE[\sqrt{t(n)\log t(n)}].$$

Theorem 2 (Simulating time in square-root space, talk version).

For multi-tape Turing machines and every function $t(n) \geq n^2$,

$$TIME[t(n)] \subseteq SPACE[\sqrt{t(n)} \log t(n)].$$

Proposition 1 (Obtaining oblivious Turing machines; Hennie, Stearns'66, Pippenger, Fischer'79, Fortnow, Lipton, van Melkebeek, Viglas'05).

For every time-t(n) multitape Turing machine M, there is an equivalent time-T(n) two-tape Turing machine M' which is oblivious, with $T(n) \leq \mathcal{O}(t(n)\log t(n))$. Furthermore, given n and $i \in [T(n)]$ specified in $\mathcal{O}(\log t(n))$ bits, the two head positions of M' on a length-n input at time step i can be computed in poly(log t(n)) time.

Corollary 1 (Separation of linear space and almost-quadratic time).

For space constructible $s(n) \ge n$ and all $\varepsilon > 0$, SPACE $[s(n)] \not\subset \text{TIME}[s(n)^{2-\varepsilon}]$.

Corollary 2 (A specific language requiring almost-quadratic time).

The language $L = \{\langle M, x, 1^k \rangle \mid |M| \leq k \text{ and } M(x) \text{ halts in space } k \}$ requires $n^{2-\varepsilon}$ time to solve on a multitape Turing machine, for every $\varepsilon > 0$.

Part 2: Tree Evaluation

Definition 1 (TREE EVALUATION).

TREE EVALUATION on trees of bit-length b, maximum height h, and fan-in d is the following problem. On input, you are given a rooted d-ary tree of maximum height h such that each leaf is labelled by a bit-string of length b, and every internal node u has a function $f_u: \{0,1\}^{d \cdot b} \to \{0,1\}^b$. The goal is to compute the value of the tree at the root.

Theorem 3 (Tree Evaluation in small space).

TREE EVALUATION on trees of bit-length b, maximum height h, and fan-in $at \ most \ d$, can be computed in $\mathcal{O}(d \cdot b + h \log(d \cdot b))$ space.

Theorem 4 (Tree Evaluation in small space, talk version).

TREE EVALUATION on trees of bit-length b, maximum height h, and fan-in 2, can be computed in $\mathcal{O}((b+h)\cdot \log b)$ space.

Definition 2 (Register program).

A register program over an alphabet Σ consists of a collection of memory locations $R = \{R_1, \ldots, R_s\}$, called registers, each of which can hold one element from Σ , and an ordered list of instructions in the form of updates to some register R_i based on the current values of the register and an input $x \in \{0,1\}^n$.

Definition 3 (Clean computation).

Let \mathcal{R} be a ring and let f be a function whose output can be represented in \mathcal{R} . A register program over the alphabet \mathcal{R} with s registers cleanly computes f into a register R_o if for all possible $x_1, \ldots, x_n \in \{0, 1\}^b$ and $\tau_1, \ldots, \tau_s \in \mathcal{R}$, if the program is run after initializing each register $R_i = \tau_i$, then at the end of the execution, $R_o = \tau_o + f(x_1, \ldots, x_n)$ and $R_i = \tau_i$ for all $i \neq o$.

Definition 4 (Inverse clean register program).

If P is a register program that cleanly computes $f(x_1, \ldots, x_n)$, an inverse to P is any program P^{-1} that cleanly computes $-f(x_1, \ldots, x_n)$.

Observation 1 (Inverse clean register programs exist).

For any clean register program P, its inverse exists.

Definition 5 (Uniform register programs).

A family of register programs $P = \{P_n\}_{n \in \mathbb{N}}$ is space c(n)-uniform if there is an algorithm using space c(n) which, given (t, x) and access to an array of registers, performs the t-th instruction of P_n on input $x \in \{0, 1\}^n$.

Proposition 2 (Register programs and space complexity).

For $n \in \mathbb{N}$, let $c := c(n), s := s(n), t := t(n) \in \mathbb{N}$, and let $\mathcal{R} := \mathcal{R}_n$ be a ring. Let $f := f_n$ be a Boolean function on n variables and let $P := P_n$ be a space c-uniform register program with s registers over \mathcal{R} and which has t instructions in total, that cleanly computes f. Then f can be computed in space $\mathcal{O}(c + s \log |\mathcal{R}| + \log t)$.

Definition 6 (Root of unity).

An element ω of a field \mathcal{K} is a root of unity of order m if $\omega^m = 1$. It is a primitive root of unity, if, moreover, $\omega^k \neq 1$ for all integer 0 < k < m.

Proposition 3 (Roots of unity are useful).

Let \mathcal{K} be a finite field and let ω be a primitive root of unity of order m in \mathcal{K} . Then, for all 0 < b < m, $\sum_{j=1}^{m} \omega^{jb} = 0$. (Note that for b = 0, the sum equals -1.)

Lemma 1 (Roots of unity are really useful).

Let \mathcal{K} be a finite field, let $m = |\mathcal{K}| - 1$ and let ω be a primitive root of unity of order m in \mathcal{K} . Let d < m and let τ_i, x_i be elements of \mathcal{K} for $i \in [d]$. Then

$$\sum_{j=1}^{m} \prod_{i=1}^{d} (\omega^{j} \tau_{i} + x_{i}) = -1 \cdot \prod_{i=1}^{d} x_{i}.$$

Moreover, let $q: \mathcal{K}^n \to \mathcal{K}$ be a degree-d polynomial over \mathcal{K} . Then

$$\sum_{j=1}^{m} -1 \cdot q(\omega^{j} \tau_{1} + x_{1}, \dots, \omega^{j} \tau_{n} + x_{n}) = q(x).$$

Lemma 2 (Clean computation of one node of TEP).

Let \mathcal{K} be a finite field such that $m:=|\mathcal{K}|-1>2b$. Let u be a non-leaf node in the instance of Tree Evaluation with bit-length b and height h. Let P_ℓ, P_r be register programs which cleanly compute the values $v_\ell, v_r \in \{0,1\}^b$ at u's children into registers $R_\ell, R_r \in \mathcal{K}^b$, respectively, and let P_ℓ^{-1}, P_r^{-1} be their inverses. Let $f_u: \{0,1\}^{2b} \to \{0,1\}^b$ be the function at node u.

Then there exists a register program P_u that cleanly computes $v_u = f(v_\ell, v_r) \in \{0, 1\}^b$ into registers $R_u \in \mathcal{K}^b$, as well as an inverse program P_u^{-1} . Both P_u, P_u^{-1} consist of m copies each of $P_\ell, P_r, P_\ell^{-1}, P_r^{-1}$ and 5mb other instructions. Additionally, both programs only use registers R_u plus any other registers used by P_ℓ, P_r .