The Coarse Menger Theorems and Conjectures

Presented by Eliška Červenková

Based on the work of T. Nguyen, A. Scott, and P. Seymour:

- A counterexample to the coarse Menger conjecture, JCTB (2025)
- Asymptotic structure. IV. A counterexample to the weak coarse Menger conjecture (2025)

PhD Students Seminar, November 20, 2025

1 Menger's Theorem

Theorem 1.1 (Menger's Theorem, 1927). Let $k \ge 1$, G be a graph and let $S, T \subseteq V(G)$ be two sets of vertices. Then either

- ullet there are k vertex-disjoint paths between S and T, or
- there is a set X of at most k-1 vertices such that every path between S and T contains a vertex of X.

2 The Coarse Menger Theorems and Conjectures

Conjecture 2.1 (Strong Coarse Menger Conjecture). For all integers $k, d \ge 1$, there exists an integer $\ell > 0$, such that for any graph G and any $S, T \subseteq V(G)$, one of the following holds:

- There exist k paths between S and T that are pairwise at distance at least d.
- There exists a set $X \subseteq V(G)$ with $|X| \le k-1$ such that every path from S to T contains a vertex at distance at most ℓ from a member of X.

Conjecture 2.2 (Weak Coarse Menger Conjecture). For all integers $k, d \ge 1$, there exist integers $m, \ell > 0$ such that for any graph G and any $S, T \subseteq V(G)$, one of the following holds:

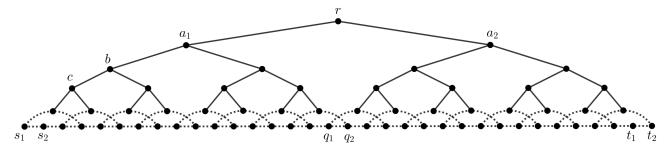
- There exist k paths between S and T that are pairwise at distance at least d.
- There exists a set $X \subseteq V(G)$ with $|X| \le m$ such that every path from S to T passes within distance at most ℓ from a member of X.

2.1 The Current State of the Conjectures

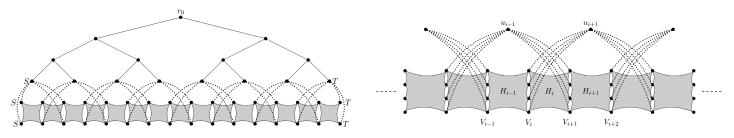
Conjecture	Dist.(d)	Paths (k)	Separator (X)	Status
Classic Menger	≥ 1	Any	$\leq k-1$	TRUE
Strong CMC	≥ 2	2	≤ 1	TRUE
	2	≥ 3	$\leq k-1$	OPEN
	≥ 3	≥ 3	$\leq k-1$	FALSE
Weak CMC	≥ 3	≥ 3	any const. m	FALSE

2.2The Counterexamples

For The Strong Coarse Menger Conjecture (k = d = 3):



For The Weak Coarse Menger Conjecture:



The Powerful Intervals 2.3

Definition 2.3. A set of intervals H is ℓ -powerful in (0,n) if it captures every interval of length ℓ that is contained within (0, n).

Lemma 2.4. If $0 < \ell \le n$ and H is a set of intervals that is ℓ -powerful in (0,n), and minimal with this property, then in standard form $a_i \geq b_i - \ell + 2$ for all $i, j \in \{1, \ldots, t\}$ with $j \geq i + 2$.

Lemma 2.5. If $0 < 2\ell \le n$ and H is a set of intervals that is 2ℓ -powerful in (0,n), then there exists $H' \subseteq H$, minimally ℓ -powerful in (0,n), that can be written $H' = \{(a_i,b_i): 1 \le i \le t\}$ in standard form, such that

- $a_j \ge b_i \ell + 2$ for $1 \le i, j \le t$ with $j \ge i + 2$; and $b_i b_{i-1} \ge \ell$ for 1 < i < t, and $b_{i-1} a_i \ge \ell$ for $1 < i \le t$.

Lemma 2.6. If $0 < 4\ell \le n$ and H is a set of intervals that is 4ℓ -powerful in (0,n), then there exists $H' \subseteq H$, ℓ -powerful in (0,n), which can be written $H' = \{(a_i,b_i): 1 \le i \le t\}$ in standard form, such that the order of the numbers a_1, \ldots, a_t and b_1, \ldots, b_t is:

$$0 = a_1 < a_2 < \min(a_3, b_1) < \max(a_3, b_1) < \min(a_4, b_2) < \max(a_4, b_2) < \dots$$

$$\cdots < \min(a_t, b_{t-2}) < \max(a_t, b_{t-2}) < b_{t-1} < b_t = n.$$

Every two of $a_1, \ldots, a_t, b_1, \ldots, b_t$ differ by at least ℓ , except possibly the pairs $(a_1, a_2), (b_{t-1}, b_t),$ and (a_i, b_{i-2}) for $3 \le i \le t$.

2.4 The Proof of The Strong Coarse Menger Theorem (k = 2, d = 3)

Theorem 2.7. Let G be a non-null graph and let $S,T \subseteq V(G)$. Then either:

- There are two paths between S, T with distance at least three; or
- There exists $x \in V(G)$ such that every S-T path is at distance ≤ 161 from x.

Notation 1. Let G be a connected graph and $S,T\subseteq V(G)$ be two disjoint vertex sets. Denote

- R an S-T path of minimum length, with vertices r_1, \ldots, r_{n-1} where $r_1 \in S$ and $r_{n-1} \in T$
- $W = \{v \in V(G) \mid d(v,R) \leq c\}$ for an integer constant c The set of vertices with d(v,R) = c is called the surface
- C the set of all connected components of induced subgraph $G \setminus W$
- $\mathcal{D} = \{D_1, \dots, D_t\}$ a specific subset of \mathcal{C} chosen via Lemma 2.6
- Δ the union of the vertex sets of the members of \mathcal{D}
- $\Delta(X) = \{V(D) \mid D \in \mathcal{D}, X \cap N(D) \neq \emptyset\}$

Claim 1. The set of intervals $\{(a(C),b(C)): C \in \mathcal{C}\}\$ is 16ℓ -powerful in (0,n).

Claim 2. For $1 \le i, j \le t$, if $j \ge i + 3$ then $d(D_i, D_j) \ge 4\ell - 2c + 2$.

Claim 3. If $X \subseteq V(G)$ is connected and $|\Delta(X)| \ge 4$, then $|X| \ge 30$.

Definition 2.8. Let us say a **joint** is a subset $X \subseteq V(G)$, inducing a connected subgraph, such that every vertex of $X \cap W$ has distance at most (|X| - 1)/2 from the surface, and either

- $|\Delta(X)| \ge 2$ and $|X| \le 3$; or
- $|\Delta(X)| \ge 3$ and $|X| \le 8$.

Let Z be the union of all the joints.

Definition 2.9. Each component of the subgraph $G[Z \cup \Delta]$ is called a **supercomponent**. Let \mathcal{F} be the set of all supercomponents.

Claim 4. For every joint X, d(X, R) > c - (|X| - 1)/2.

Claim 5. Let F_1 , F_2 be distinct supercomponents, and let Q be a path of G with ends $f_1 \in V(F_1)$ and $f_2 \in V(F_2)$.

- If both f_1, f_2 belong to joints then $|Q| \geq 16$;
- if exactly one of f_1, f_2 belongs to a joint X then $|Q| \geq 8$, and $|Q| \geq 24$ if $|\Delta(X)| \geq 3$; and
- if neither of f_1, f_2 belong to joints then $|Q| \ge 6$.

In any case, $d(F_1, F_2) \geq 5$.

Claim 6. If F_1, F_2 are distinct supercomponents, and A is a path of length at most c+1 between F_2 and R, then $d(F_1, A) \geq 3$.

Claim 7. The order of the numbers a_1, \ldots, a_s and b_1, \ldots, b_s is:

$$0 = a_1 < a_2 < \min(a_3, b_1) < \max(a_3, b_1) < \min(a_4, b_2) < \max(a_4, b_2) < \cdots$$

$$\cdots < \min(a_s, b_{s-2}) < \max(a_s, b_{s-2}) < b_{s-1} < b_s = n.$$

Every two of $a_1, \ldots, a_s, b_1, \ldots, b_s$ differ by at least ℓ , except possibly the pairs (a_1, a_2) , (b_{s-1}, b_s) , and (a_i, b_{i-2}) for $3 \le i \le s$.