Selected Results from The Method of Hypergraph Containers

Sudatta Bhattacharya

Definitions and Theorems

Definition 1 (Extremal Number). The extremal number of a graph H with respect to the Erdős-Rényi random graph G(n, p) is defined to be

$$ex(G(n,p),H) := \max \{ e(G) : G \subseteq G(n,p) \text{ and } H \not\subseteq G \}.$$

Theorem 1 (Frankl and Rödl). If $p \ge 1/\sqrt{n}$, then

$$ex(G(n,p),K_3) = \left(\frac{1}{4} + o(1)\right)pn^2$$
 with high probability as $n \to \infty$.

Theorem 2 (The Container Theorem for Triangle-Free Graphs). For each $n \in \mathbb{N}$, there exists a collection \mathcal{G} of graphs on n vertices with the following properties:

- (a) $|\mathcal{G}| \le n^{O(n^{3/2})}$.
- (b) Each $G \in \mathcal{G}$ contains $o(n^3)$ triangles.
- (c) Each triangle-free graph on n vertices is contained in some $G \in \mathcal{G}$.

Theorem 3 (Supersaturation for Triangles). For every $\epsilon > 0$, there exists $\delta > 0$ such that the following holds. If G is a graph on n vertices with

$$e(G) > \left(\frac{1}{4} + \epsilon\right) n^2,$$

then G has at least δn^3 triangles.

Definition 2 (Triangle Encoding Hypergraph). The hypergraph encoding triangles in K_n is the 3-uniform hypergraph H with vertex set $V(H) = E(K_n)$ and edge set

$$E(H) = \{\{f_1, f_2, f_3\} \subseteq E(K_n) : \{f_1, f_2, f_3\} = E(K_3)\}.$$

In words, the edges of H encode the triangles in K_n .

The Hypergraph Container Lemma for 3-uniform hypergraphs. For every c > 0, there exists $\delta > 0$ such that the following holds. Let H be a 3-uniform hypergraph with average degree d, set $\tau := 1/\sqrt{d}$, and suppose that $\tau \leq \delta$, and that

$$\Delta_1(H) \le c \cdot d,$$

$$\Delta_2(H) \le c \cdot \sqrt{d}$$

Then there exists a collection C of subsets of V(H), with

$$|\mathcal{C}| \le \binom{v(H)}{\tau \cdot v(H)},$$

such that

- (a) For every independent set $I \in I(H)$, there exists $C \in \mathcal{C}$ such that $I \subseteq C$.
- (b) $|C| \leq (1 \delta)v(H)$ for every $C \in \mathcal{C}$.

The Graph Container Lemma. For every c > 0, there exists $\delta > 0$ such that the following holds. Let G be a graph with average degree d and maximum degree $\Delta(G) \leq c \cdot d$, and set $\tau := 2\Delta/d$. There exists a collection C of subsets of V(G), with

$$|\mathcal{C}| \le \binom{v(G)}{d\tau \cdot v(G)},$$

such that

- (a) For every independent set $I \in I(G)$, there exists $C \in \mathcal{C}$ such that $I \subseteq C$.
- (b) $|C| \leq (1 \delta)v(G)$ for every $C \in \mathcal{C}$.

The Graph Container Algorithm. Given a graph G and an independent set $I \in I(G)$, we will maintain a partition $V(G) = A \cup S \cup X$, where A are the 'active' vertices, S is the current version of the fingerprint, and X is the set of 'excluded' vertices, which we already know are not in I. We start with A = V(G) and $S = X = \emptyset$. Now, while $|X| \leq \delta v(G)$, repeat the following steps:

- 1. Let v be the first vertex of I in the max-degree order on G[A].
- 2. Move v into S, i.e., set $S := S \cup \{v\}$.
- 3. Move the neighbours of v into X, i.e., set $X := X \cup N(v)$.
- 4. Move the vertices which preceded v in the max-degree order on G[A] into X, i.e., set

 $X := X \cup W$, where $W = \{u \in A : u < v \text{ in the max-degree order on } G[A]\}.$

5. Remove the new vertices of $S \cup X$ from A, i.e., set $A := V(G) \setminus (S \cup X)$.

Finally, set A(I) := A, S(I) := S, and X(I) := X.