Enumeration of intersection graph of x-monotone curves

Authors: Jacob Fox, János Pach, Andrew Suk Presented by: Todor Antić

Doctoral Seminar 12/12/24

1 Basics

Definition 1 Let C be a collection of sets. The intersection graph of C is the graph with vertex set C in which two vertices are adjacent if the two sets have nonempty intersection.

Definition 2 A string graph is an intersection graph of curves in the plane.

Definition 3 A collection of curves in the plane is called a <u>collection of pseudosegments</u> if each two have at most one point in common.

Definition 4 A curve in the plane is <u>x-monotone</u> if every vertical line intersects it exactly once.

2 Lower bound

Theorem 5 For $k \leq n^{1/3}$, there are at least $2^{\Omega(kn)}$ n-vertex intersection graphs of x-monotone pseudo-segments with clique number at most k.

Corollary 6 There are at least $2^{\Omega(n^{4/3})}$ labeled intersection graphs of x-monotone pseudo-segments.

3 Interlude - VC dimension

Definition 7 Let \mathcal{F} be a set system. For a set X we define $\mathcal{F} \cap X = \{F \cap X : F \in \mathcal{F}\}$. We say that \mathcal{F} shatters X if $\mathcal{F} \cap X = \mathcal{P}(X)$.

Definition 8 For a set-system \mathcal{F} , we define the <u>VC-dimension</u> of \mathcal{F} to be the maximum integer k such that some set of size k is shattered by \mathcal{F} .

Theorem 9 Let $d \ge 2$ be fixed and $n, m \ge 2$. Then the number $h_d(n, m)$ of multiset systems of m subsets of [n] with VC-dimension at most d satisfies

$$h_d(m,n) = 2^{O(m^{1-1/d} n \log(m))}$$

And if $m > n^d$, then

$$h_d(m,n) = 2^{O(n^d \log(m))}.$$

4 Necessary statements from other works - without proof

Definition 10 A pseudoline is a two-way infinite x-monotone curve. An arrangement of pseudolines is a finite collection of pseudolines such that each two have at most one point in common. We say that two arrangements are <u>x-isomorphic</u> if a sweep by vertical line meets the crossings in the same order.

Lemma 11 (Stanley, 1984) The number of arrangements of m pseudolines, up to is x-isomorphisms, is at most $2^{\Theta(m^2 \log(m))}$.

Lemma 12 (Bern et al., 1991) Let \mathcal{A} be a collection of pseudolines. Then, for any $\alpha \in \mathcal{A}$, the sum of the numbers of sides in all the cells in the arrangement of \mathcal{A} that are supported by α is at most O(m).

Definition 13 Let G be a graph. We define the VC-dimension of G to be the VC-dimension of the set system $\mathcal{F}(G) = \{N(v) : v \in G\}$. Where N(v) is the neighbourhood of v.

Lemma 14 (Pach and Tóth, 2006) Let G be the intersection graph of a collection of pseudo-segments in the plane. Then the VC-dimension of G is at most an absolute constant d.

Definition 15 A collection of x-monotone pseudo-segments in the plane is double grounded if there are two lines l_1, l_2 , such that each pseudo-segment in the collection has its left endpoint on l_1 and its right endpoint on l_2 .

Definition 16 Let \mathcal{A} be a collection of double grounded x-monotone pseudo-segments in the plane. The <u>vertical decomposition</u> of the arrangement of \mathcal{A} is obtained by drawing a vertical segment from each crossing point and endpoint in the arrangement, in both directions, and extend it until it meets the arrangement of \mathcal{A} , else to $\pm\infty$. The cells of the arrangeet induced by the vertical decomposition are called generalized trapezoids.

Lemma 17 (Clarckson and Shor, 1989) Let \mathcal{A} be a collection of m double grounded x-monotone pseudo-segments in the plane. Then for any parameter $1 \leq r \leq m$, there is a set of at most $s = 6r \log(m)$ curves in \mathcal{A} whose vertical decomposition partitions the plane into t generalized trapezoids $\Delta_1, \Delta_2, \ldots, \Delta_t$, such that $t = O(s^2)$.

5 Upper bound - main result

Let f(m, n) denote the number of labelled intersection graphs between a collection \mathcal{A} of m double grounded x-monotone curves whose grounds are the vertical lines at x = 0 and x = 1, and a collection \mathcal{B} of n x-monotone curves whose endpoints lie inside the strip $S = [0, 1] \times \mathbf{R}$ such that $A \cup B$ is a collection of pseudo-segments.

Lemma 18 For $m, n \ge 1$, we have

$$f(m,n) \le 2^{O(n^{d(2d-1)}m^{(2d-2)/(2d-1)}\log^2(m)} + 2^{O(n^{3/2-1/d}\log(n))} + 2^{O(m\log^3(m))}$$

Theorem 19 There is an absolute constant $\varepsilon \in (0, 1)$ such that the following holds. There are at most $2^{O(n^{3/2-\varepsilon})}$ labelled *n*-vertex intersection graphs of x-monotone pseudo-segments in the plane.

6 Some abbreviations I might use

- intersection graph \rightarrow int graph
- x-monotone $\rightarrow x$ -mon
- isomorphism \rightarrow iso
- $\bullet \ {\rm collection} \to {\rm col}$
- VC-dimension \rightarrow VC-dim
- endpoints \rightarrow ends
- $\bullet \ \mathrm{vertical} \to \mathrm{vert}$
- pseudo-segment \rightarrow pseudo-seg
- decomposition \rightarrow decomp
- between \rightarrow btw