Modern Hashing Made Simple

by Michael A. Bender, Martin Farach-Colton, John Kuszmaul, William Kuszmaul

Definitions

e A hash table is a data structure that maintains a set S under operations Insert (S, x), which adds =
to S, Delete (S, x), which removes z from S, and Query(S,x) which answers whether z € S.

e In the case of a fized-capacity hash table, we use n to denote the maximum capacity. When discussing
resizable hash tables, we denote by n the current capacity and by n the current number of elements.

e We assume & C U = [2¥] where w = (1 4+ O(1)) logn is the word size of the machine.

o We assume access to fully random hash functions, invoked as an oracle.

e Chernoff-Hoeffding bound. Consider a sum of 0/1-random variables X = """ | X; with mean p =
E[X] > logn. Then X < p+ O(y/ulogn) with probability at least 1 — 1/ poly(n).

o Exhaustive subtabulation. Suppose f is a function mapping b-bit inputs to c-bit outputs. By
trying all possible inputs to f, we can precompute a table of size 2°c and answer f(x) in constant
time. E.g. if b = %logn and ¢ = 1, then the table has size /n.

e B-Trees. A B-tree on n keys of w bits each is a balanced search tree where each node has up
to B 4 1 children, and the depth of the tree is O(logg n). Insertion, deletions, and queries can
be implemented in time O(logg,,n). Note that as long as the tree consists of 20(®) nodes (so
that pointers between nodes require O(w) bits) then each node can be stored in one memory block
including pointers to children and parent.

e k-Tries. For any k a power of two, a k-trie on w-bit keys is a k-ary search tree where the pivots are
evenly spaced in the universe of possible keys. For any key « € [2%] in the tree, the root-to-leaf path
for x can be computed by:using the first (i.e. highest order) logk bits to navigate the root node,
using the next log k bits to navigate depth 1 nodes, and so on, for a total of w/logk levels. The
depth of a k-trie is therefore w/ log k.

Theorems

e Theorem (Main result). Let w be the machine word size, and consider hash tables storing w-bit
keys, where the number n of stored keys satisfies w = O(logn). There is such a hash table that
uses nw + O(nloglogn) bits of space, even as n changes over time, while supporting queries in O(1)
worst-case time and insertions/deletions in O(1) time with probability 1 — 1/ poly(n).

e Lemma (k-Trie Lemma). A k-trie on n keys of w bits each takes time O(w/log k) per operation
and takes space O(nkw?/logk) bits. Here we assume that the arrays used to allocate nodes are
already pre-allocated and initialized to zero.

e Lemma (Space-Efficient Resizable Arrays). Consider an array A that grows and shrinks over
time. If 7 is the maximum size that the array is allowed to be, and n is the current size at any
moment, then the array A can be implemented to use n + O(y/f) machine words while supporting
constant time operations.

Hash tables

e Slow Partition Hash Table. Split the array into buckets of size (9(log3 n). Map each element to
a bucket using a hash function and then search naively in each bucket to get time (’)(log3 n) per
operation.

e Indexed Partition Hash Table. Improve buckets to support expected constant time operations
by using B-trees to quickly search/insert/delete within a bucket. This needs some additional ideas
to make sure that the space does not blow up past O(loglogn) overhead per key.

e Partition Hash Table. Delegate insertions and deletions to an auxiliary data structure (two k-tries)
to go from expected constant time to worst-case constant time with high probability.

e Resizable Partition Hash Table. Resize each bucket using space-efficient resizable arrays. When
resizing the entire hash table, use two copies the same way one de-amortizes a regular array.



