
Modern Hashing Made Simple
by Michael A. Bender, Martín Farach-Colton, John Kuszmaul, William Kuszmaul

Definitions
• A hash table is a data structure that maintains a set S under operations Insert(S, x), which adds x

to S, Delete(S, x), which removes x from S, and Query(S, x) which answers whether x ∈ S.
• In the case of a fixed-capacity hash table, we use n to denote the maximum capacity. When discussing

resizable hash tables, we denote by n̄ the current capacity and by n the current number of elements.
• We assume S ⊆ U = [2w] where w = (1 + Θ(1)) log n is the word size of the machine.
• We assume access to fully random hash functions, invoked as an oracle.
• Chernoff-Hoeffding bound. Consider a sum of 0/1-random variables X =

∑n
i=1 Xi with mean µ =

E[X] ≥ log n. Then X ≤ µ+O(
√
µ log n) with probability at least 1− 1/poly(n).

• Exhaustive subtabulation. Suppose f is a function mapping b-bit inputs to c-bit outputs. By
trying all possible inputs to f , we can precompute a table of size 2bc and answer f(x) in constant
time. E.g. if b = 1

2 log n and c = 1, then the table has size
√
n.

• B-Trees. A B-tree on n keys of w bits each is a balanced search tree where each node has up
to B + 1 children, and the depth of the tree is O(logB+1 n). Insertion, deletions, and queries can
be implemented in time O(logB+1 n). Note that as long as the tree consists of 2O(w) nodes (so
that pointers between nodes require O(w) bits) then each node can be stored in one memory block
including pointers to children and parent.

• k-Tries. For any k a power of two, a k-trie on w-bit keys is a k-ary search tree where the pivots are
evenly spaced in the universe of possible keys. For any key x ∈ [2w] in the tree, the root-to-leaf path
for x can be computed by:using the first (i.e. highest order) log k bits to navigate the root node,
using the next log k bits to navigate depth 1 nodes, and so on, for a total of w/ log k levels. The
depth of a k-trie is therefore w/ log k.

Theorems
• Theorem (Main result). Let w be the machine word size, and consider hash tables storing w-bit

keys, where the number n of stored keys satisfies w = Θ(log n). There is such a hash table that
uses nw+O(n log log n) bits of space, even as n changes over time, while supporting queries in O(1)
worst-case time and insertions/deletions in O(1) time with probability 1− 1/ poly(n).

• Lemma (k-Trie Lemma). A k-trie on n keys of w bits each takes time O(w/ log k) per operation
and takes space O(nkw2/ log k) bits. Here we assume that the arrays used to allocate nodes are
already pre-allocated and initialized to zero.

• Lemma (Space-Efficient Resizable Arrays). Consider an array A that grows and shrinks over
time. If n̄ is the maximum size that the array is allowed to be, and n is the current size at any
moment, then the array A can be implemented to use n +O(

√
n̄) machine words while supporting

constant time operations.

Hash tables
• Slow Partition Hash Table. Split the array into buckets of size O(log3 n). Map each element to

a bucket using a hash function and then search naively in each bucket to get time O(log3 n) per
operation.

• Indexed Partition Hash Table. Improve buckets to support expected constant time operations
by using B-trees to quickly search/insert/delete within a bucket. This needs some additional ideas
to make sure that the space does not blow up past O(log log n) overhead per key.

• Partition Hash Table. Delegate insertions and deletions to an auxiliary data structure (two k-tries)
to go from expected constant time to worst-case constant time with high probability.

• Resizable Partition Hash Table. Resize each bucket using space-efficient resizable arrays. When
resizing the entire hash table, use two copies the same way one de-amortizes a regular array.


