Modern Hashing Made Simple

by Michael A. Bender, Martín Farach-Colton, John Kuszmaul, William Kuszmaul

Definitions

- A hash table is a data structure that maintains a set S under operations Insert(S, x), which adds x to S, Delete(S, x), which removes x from S, and Query(S, x) which answers whether $x \in S$.
- In the case of a *fixed-capacity* hash table, we use n to denote the maximum capacity. When discussing *resizable* hash tables, we denote by \bar{n} the current capacity and by n the current number of elements.
- We assume $S \subseteq U = [2^w]$ where $w = (1 + \Theta(1)) \log n$ is the word size of the machine.
- We assume access to fully random hash functions, invoked as an oracle.
- Chernoff-Hoeffding bound. Consider a sum of 0/1-random variables $X = \sum_{i=1}^{n} X_i$ with mean $\mu = \mathbb{E}[X] \ge \log n$. Then $X \le \mu + \mathcal{O}(\sqrt{\mu \log n})$ with probability at least $1 1/\operatorname{poly}(n)$.
- Exhaustive subtabulation. Suppose f is a function mapping b-bit inputs to c-bit outputs. By trying all possible inputs to f, we can precompute a table of size $2^b c$ and answer f(x) in constant time. E.g. if $b = \frac{1}{2} \log n$ and c = 1, then the table has size \sqrt{n} .
- **B-Trees.** A *B-tree* on *n* keys of *w* bits each is a balanced search tree where each node has up to B + 1 children, and the depth of the tree is $\mathcal{O}(\log_{B+1} n)$. Insertion, deletions, and queries can be implemented in time $\mathcal{O}(\log_{B+1} n)$. Note that as long as the tree consists of $2^{\mathcal{O}(w)}$ nodes (so that pointers between nodes require $\mathcal{O}(w)$ bits) then each node can be stored in one memory block including pointers to children and parent.
- k-Tries. For any k a power of two, a k-trie on w-bit keys is a k-ary search tree where the pivots are evenly spaced in the universe of possible keys. For any key $x \in [2^w]$ in the tree, the root-to-leaf path for x can be computed by:using the first (i.e. highest order) log k bits to navigate the root node, using the next log k bits to navigate depth 1 nodes, and so on, for a total of $w/\log k$ levels. The depth of a k-trie is therefore $w/\log k$.

Theorems

- Theorem (Main result). Let w be the machine word size, and consider hash tables storing w-bit keys, where the number n of stored keys satisfies $w = \Theta(\log n)$. There is such a hash table that uses $nw + \mathcal{O}(n \log \log n)$ bits of space, even as n changes over time, while supporting queries in $\mathcal{O}(1)$ worst-case time and insertions/deletions in $\mathcal{O}(1)$ time with probability $1 1/\operatorname{poly}(n)$.
- Lemma (k-Trie Lemma). A k-trie on n keys of w bits each takes time $\mathcal{O}(w/\log k)$ per operation and takes space $\mathcal{O}(nkw^2/\log k)$ bits. Here we assume that the arrays used to allocate nodes are already pre-allocated and initialized to zero.
- Lemma (Space-Efficient Resizable Arrays). Consider an array A that grows and shrinks over time. If \bar{n} is the maximum size that the array is allowed to be, and n is the current size at any moment, then the array A can be implemented to use $n + \mathcal{O}(\sqrt{\bar{n}})$ machine words while supporting constant time operations.

Hash tables

- Slow Partition Hash Table. Split the array into *buckets* of size $\mathcal{O}(\log^3 n)$. Map each element to a bucket using a hash function and then search naively in each bucket to get time $\mathcal{O}(\log^3 n)$ per operation.
- Indexed Partition Hash Table. Improve buckets to support expected constant time operations by using B-trees to quickly search/insert/delete within a bucket. This needs some additional ideas to make sure that the space does not blow up past $\mathcal{O}(\log \log n)$ overhead per key.
- **Partition Hash Table.** Delegate insertions and deletions to an auxiliary data structure (two *k*-tries) to go from expected constant time to worst-case constant time with high probability.
- **Resizable Partition Hash Table.** Resize each bucket using space-efficient resizable arrays. When resizing the entire hash table, use two copies the same way one de-amortizes a regular array.