Definition 1 (Local convergence).

 $\mathcal{G}_D^{\bullet} := \{ The space of all rooted connected degree D-bounded graphs \} \quad, (\mathcal{G}_D^{\bullet})_r := \{ g \in \mathcal{G}_D^{\bullet} : \forall x \in V(g), \ d(x, root) \leq r \}.$

A sequence of graphs (G_1, G_2, \cdots) is locally convergent, if for all r and $g_r \in (\mathcal{G}_D^{\bullet})_r$, $\mathbb{P}_x[B_r^{G_i}(x) \cong g_r]$ converges.

Definition 2 (Graphing). A graphing is a quadruple $\mathbf{G} = (J, \mathcal{B}, E, \lambda)$, where (J, \mathcal{B}) is a standard Borel sigma-algebra, E is a Borel subset of $J \times J$ that is symmetric (invariant under interchanging the coordinates), λ is a probability measure on (J, \mathcal{B}) , and a "measure-preservation" condition holds:

$$\int_{A} \deg_{B}(x) \, d\lambda(x) = \int_{B} \deg_{A}(x) \, d\lambda(x) \quad (A, B \in \mathcal{B}).$$

We also have this measure that can extend to any Borel set of $\mathcal{B} \times \mathcal{B}$:

Edge measure:
$$\eta(A \times B) = \int_A \deg_B(x) d\lambda(x)$$

A subgraphing (\mathbf{G}^F) of a graphing $\mathbf{G} = (J, \mathcal{B}, E, \lambda)$ is a 4-tuple $\mathbf{H} = (J, \mathcal{B}, F, \lambda)$, where $F \subseteq E$ is a Borel set, we can prove this subgraphing is a graphing. and we have,

$$\eta_{\mathbf{H}}(X) = \eta(X) \quad (X \in \mathcal{B} \times \mathcal{B}, X \subseteq F).$$

Lemma 3. For $B \in \mathcal{B}$, the neighborhood $N_{\mathbf{G}}(B)$ is Borel.

Lemma 4. Let **G** be a graphing, and let $f : V(\mathbf{G}) \times V(\mathbf{G}) \to \mathbb{R}$ be a locally finite Borel function. Assume that f(x, y) = 0 unless $y \in V(\mathbf{G}_x)$. Then

$$\int_{V(\mathbf{G})} \sum_{y} f(x,y) \, dx = \int_{V(\mathbf{G})} \sum_{x} f(x,y) \, dy.$$

Definition 5 (Matroid). A matroid $M = (E, \mathcal{I})$ consists of a finite set E (the ground set) and a collection of subsets \mathcal{I} (the independent sets), satisfying the following axioms:

 $1) \underset{Non-emptiness}{\emptyset \in \mathcal{I}} \quad 2)A \in \mathcal{I}, \ B \subseteq A \underset{Hereditary}{\Longrightarrow} B \in \mathcal{I} \quad 3)A, B \in \mathcal{I}, \ |A| > |B| \underset{Exchange \ property}{\Longrightarrow} \exists x \in A \setminus B : \ B \cup \{x\} \in \mathcal{I}$

or equivalently M = (E, r) consists of a finite set E (the ground set) and a rank function $r : 2^E \to \mathbb{Z}_{\geq 0}$, satisfying the following axioms:

$$1) \underset{Normalization}{r(\emptyset) = 0} 2)A \subseteq B \subseteq E: r(B) - |B \setminus A| \leq r(A) \leq r(B) \quad 3)A, B \subseteq E: r(A \cup B) + r(A \cap B) \leq r(A) + r(B) \leq r(B)$$

Definition 6 (Cycle matroid of a graph).

$$G = (V, E) \to M(G) = (E, \mathcal{I} = \{All \ the \ cycle-free \ subsets \ of \ edges\})$$

or equivalently

(E,r); r(X) := |V| - c; c : is the number of connected components

Definition 7 (B-partition). Let (J, \mathcal{B}) be a standard Borel space, let \mathcal{P} be a partition of J, and for $X \subseteq J$, define

$$\mathcal{P}(X) = \bigcup \{ P \in \mathcal{P} : P \cap X \neq \emptyset \}$$

 \mathcal{P} is a \mathcal{B} -partition, if $A \in \mathcal{B} \implies \mathcal{P}(A) \in \mathcal{B}$.

Definition 8 (Re-randomization). Let π be a probability measure on (J, \mathcal{B}) , and let \mathbf{u} be a random point from π . If $\mathcal{P}_{\mathbf{u}}$ is finite, then let \mathbf{v} be a uniform random point of P; else, let $\mathbf{v} = \mathbf{u}$. We say that \mathcal{P} has the re-randomizing property if \mathbf{v} that is obtained by re-randomizing \mathbf{u} along \mathcal{P} distributed according to π .

We will prove that the following rank normalization can be introduced as a cycle matroid for graphing. X_u is connected competent that includes u.

$$\rho(X) := \frac{r(X)}{|V|} = 1 - \operatorname{E}_{\mathbf{u}}\left(\frac{1}{|X_{\mathbf{u}}|}\right), \psi(X) := \operatorname{E}_{\mathbf{u}}\left(\frac{1}{|X_{\mathbf{u}}|}\right) \implies \rho_{\mathbf{G}}(X) := 1 - \operatorname{E}_{\mathbf{u}}\left(\frac{1}{|\mathbf{G}_{\mathbf{u}}^X|}\right) = 1 - \psi(\mathcal{P}^X).$$

Lemma 9. Let $\mathbf{G} = (J, \mathcal{B}, E, \lambda)$ be a graphing, and let \mathcal{P} be the partition of J into the connected components of \mathbf{G} . Then \mathcal{P} is a \mathcal{B} -partition with the re-randomizing property.

Lemma 10. (a) If P and Q are \mathcal{B} -partitions, then so is $P \lor Q$. (b) If Q has a countable number of classes, then $P \land Q$ is a \mathcal{B} -partition.

Lemma 11. Let \mathcal{P} be a \mathcal{B} -partition, $A \in \mathcal{B}$, and let $A_k = \bigcup \{P \in \mathcal{P} : |P \cap A| = k\}$. Then $A_k \in \mathcal{B}$ for $k = 0, 1, \ldots, \infty$.

Definition 12 (finite-class representative). Call a set S a finite-class representative of a \mathcal{B} -partition \mathcal{P} , if it is a Borel set, $|S \cap P| = 1$ for every finite $P \in \mathcal{P}$, and $|S \cap P| = 0$ for every infinite $P \in \mathcal{P}$.

Lemma 13. Every \mathcal{B} -partition has a finite-class representative.

Lemma 14. If \mathcal{P}' is obtained by splitting some finite classes of \mathcal{P} , and \mathcal{P} has the re-randomizing property, then so does \mathcal{P}' .

Lemma 15. If \mathcal{P} and \mathcal{Q} are \mathcal{B} -partitions with the re-randomizing property, then so does $\mathcal{P} \lor \mathcal{Q}$.

Lemma 16 (Main lemma). For \mathcal{B} -partitions \mathcal{P} , \mathcal{Q} , and $\mathcal{R} \leq \mathcal{P} \wedge \mathcal{Q}$ with the re-randomizing property,

$$\psi(\mathcal{R}) + \psi(\mathcal{P} \lor \mathcal{Q}) \ge \psi(\mathcal{P}) + \psi(\mathcal{Q}),$$

Theorem 17 (Submodularity of the normalized rank function of a graphing). The set function ρ , defined on the Borel subsets of the edge set of a graphing, is increasing and submodular. Additionally, it satisfies the inequalities:

$$\frac{1}{1+D}\eta(X) \le \rho(X) \le \eta(X),$$

where D is the maximum degree of the graphing.

Definition 18. matroid polytope, is the convex hull of indicator vectors of subforests. The points of this polytope are called **fractional independent sets** for the cycle matroid of a graphing those are **minorizing** measures φ with $\varphi(\emptyset) = 0$ and $0 \le \alpha \le \varphi$. It is also a **maximal minorizing measure** if $\alpha(E) = \varphi(E)$. A minorizing measure is **extremal**, if it cannot be written as the average of two different minorizing measures.

Definition 19 (Hyperfinite graphing). We say that a graphing $\mathbf{G} = (J, \mathcal{B}, E, \lambda)$ is hyperfinite, if for every $\varepsilon > 0$ there is a Borel set $X \subseteq E$ with $\eta(X) \leq \varepsilon$ such that all connected components of $\mathbf{G} \setminus X$ are finite.

Lemma 20. Let $\mathbf{F} = (J, \mathcal{B}, E, \lambda)$ be a hyperfinite acyclic graphing. Then for all Borel sets $U \subseteq E$, we have $\rho(U) = \eta(U)/2$.

In particular, ρ is not only submodular, but modular, and hence, a measure.

Theorem 21. Let **G** be a hyperfinite graphing and $\mathbf{H} = (J, F)$, a Borel measurable spanning subforest of **G**. Then

$$\alpha(X) = \frac{1}{2}\eta_{\mathbf{G}}(X \cap F)$$

defines an extremal maximal minorizing measure on the Borel subsets of E.

Theorem 22. If G_1, G_2, \ldots is a sequence of finite graphs with all degrees bounded by $D \ge 0$ locally converging to a graphing $\mathbf{G} = (J, \mathcal{B}, E, \lambda)$, then $\bar{\rho}(G_n) \to \bar{\rho}(\mathbf{G})$ as $n \to \infty$. Which $\bar{\rho}(\mathbf{G}) := \rho_{\mathbf{G}}(E(\mathbf{G}))$, is total rank.