Definition 1 (Local convergence).

 $\mathcal{G}_{D}^{\bullet} := \{$ The space of all rooted connected degree D-bounded graphs $\}$, $(\mathcal{G}_{D}^{\bullet})_r := \{g \in \mathcal{G}_{D}^{\bullet} : \forall x \in V(g), d(x, root) \leq r\}.$

A sequence of graphs (G_1, G_2, \dots) is locally convergent, if for all r and $g_r \in (\mathcal{G}_D^{\bullet})_r$, $\mathbb{P}_x[B_r^{G_i}(x) \cong g_r]$ converges.

Definition 2 (Graphing). A graphing is a quadruple $\mathbf{G} = (J, \mathcal{B}, E, \lambda)$, where (J, \mathcal{B}) is a standard Borel sigma-algebra, E is a Borel subset of $J \times J$ that is symmetric (invariant under interchanging the coordinates), λ is a probability measure on (J, \mathcal{B}) , and a "measure-preservation" condition holds:

$$
\int_A \deg_B(x) d\lambda(x) = \int_B \deg_A(x) d\lambda(x) \quad (A, B \in \mathcal{B}).
$$

We also have this measure that can extend to any Borel set of $\mathcal{B} \times \mathcal{B}$:

Edge measure:
$$
\eta(A \times B) = \int_A \deg_B(x) d\lambda(x)
$$

A subgraphing(G^F) of a graphing $G = (J, \mathcal{B}, E, \lambda)$ is a 4-tuple $H = (J, \mathcal{B}, F, \lambda)$, where $F \subseteq E$ is a Borel set, we can prove this subgraphing is a graphing. and we have,

$$
\eta_{\mathbf{H}}(X) = \eta(X) \quad (X \in \mathcal{B} \times \mathcal{B}, X \subseteq F).
$$

Lemma 3. For $B \in \mathcal{B}$, the neighborhood $N_{\mathbf{G}}(B)$ is Borel.

Lemma 4. Let G be a graphing, and let $f : V(G) \times V(G) \rightarrow \mathbb{R}$ be a locally finite Borel function. Assume that $f(x, y) = 0$ unless $y \in V(\mathbf{G}_x)$. Then

$$
\int_{V(\mathbf{G})} \sum_{y} f(x, y) dx = \int_{V(\mathbf{G})} \sum_{x} f(x, y) dy.
$$

Definition 5 (Matroid). A **matroid** $M = (E, \mathcal{I})$ consists of a finite set E (the ground set) and a collection of subsets $\mathcal I$ (the independent sets), satisfying the following axioms:

$$
1) \underset{Non-emptions}{\emptyset \in \mathcal{I}} 2) A \in \mathcal{I}, B \subseteq A \implies B \in \mathcal{I} \quad 3) A, B \in \mathcal{I}, |A| > |B| \implies \exists x \in A \setminus B : B \cup \{x\} \in \mathcal{I}
$$

or equivalently $M = (E, r)$ consists of a finite set E (the ground set) and a rank function $r : 2^E \to \mathbb{Z}_{\geq 0}$, satisfying the following axioms:

$$
1) \quad r(\emptyset) = 0 \qquad 2) A \subseteq B \subseteq E : r(B) - |B \setminus A| \le r(A) \le r(B) \qquad 3) A, B \subseteq E : r(A \cup B) + r(A \cap B) \le r(A) + r(B) \le N
$$

Definition 6 (Cycle matroid of a graph).

$$
G = (V, E) \rightarrow M(G) = (E, \mathcal{I} = \{All\ the\ cycle\-free\ subsets\ of\ edges\})
$$

or equivalently

 $(E, r); r(X) := |V| - c; c:$ is the number of connected components

Definition 7 (B-partition). Let (J, \mathcal{B}) be a standard Borel space, let P be a partition of J, and for $X \subseteq J$, define

$$
\mathcal{P}(X) = \cup \{ P \in \mathcal{P} : P \cap X \neq \emptyset \}.
$$

 $\mathcal P$ is a B-partition, if $A \in \mathcal B \implies \mathcal P(A) \in \mathcal B$.

Definition 8 (Re-randomization). Let π be a probability measure on (J, \mathcal{B}) , and let **u** be a random point from π . If $\mathcal{P}_{\mathbf{u}}$ is finite, then let **v** be a uniform random point of P; else, let **v** = **u**. We say that P has the re-randomizing property if **v** that is obtained by re-randomizing **u** along $\mathcal P$ distributed according to π .

We will prove that the following rank normalization can be introduced as a cycle matroid for graphing. X_u is connected competent that includes u.

$$
\rho(X) := \frac{r(X)}{|V|} = 1 - \mathcal{E}_{\mathbf{u}}\left(\frac{1}{|X_{\mathbf{u}}|}\right), \psi(X) := \mathcal{E}_{\mathbf{u}}\left(\frac{1}{|X_{\mathbf{u}}|}\right) \implies \rho_{\mathbf{G}}(X) := 1 - \mathcal{E}_{\mathbf{u}}\left(\frac{1}{|\mathbf{G}_{\mathbf{u}}^X|}\right) = 1 - \psi(\mathcal{P}^X).
$$

Lemma 9. Let $G = (J, \mathcal{B}, E, \lambda)$ be a graphing, and let P be the partition of J into the connected components of G . Then P is a B -partition with the re-randomizing property.

Lemma 10. (a) If P and Q are B-partitions, then so is $P \vee Q$. (b) If Q has a countable number of classes, then $P \wedge Q$ is a B-partition.

Lemma 11. Let P be a B-partition, $A \in \mathcal{B}$, and let $A_k = \bigcup \{P \in \mathcal{P} : |P \cap A| = k\}$. Then $A_k \in \mathcal{B}$ for $k = 0, 1, \ldots, \infty$.

Definition 12 (finite-class representative). Call a set S a finite-class representative of a B-partition P , if it is a Borel set, $|S \cap P| = 1$ for every finite $P \in \mathcal{P}$, and $|S \cap P| = 0$ for every infinite $P \in \mathcal{P}$.

Lemma 13. Every B-partition has a finite-class representative.

Lemma 14. If \mathcal{P}' is obtained by splitting some finite classes of \mathcal{P} , and \mathcal{P} has the re-randomizing property, then so does \mathcal{P}' .

Lemma 15. If P and Q are B-partitions with the re-randomizing property, then so does $\mathcal{P} \vee \mathcal{Q}$.

Lemma 16 (Main lemma). For B-partitions P, Q, and $\mathcal{R} \leq \mathcal{P} \wedge \mathcal{Q}$ with the re-randomizing property,

$$
\psi(\mathcal{R}) + \psi(\mathcal{P} \vee \mathcal{Q}) \ge \psi(\mathcal{P}) + \psi(\mathcal{Q}),
$$

Theorem 17 (Submodularity of the normalized rank function of a graphing). The set function ρ , defined on the Borel subsets of the edge set of a graphing, is increasing and submodular. Additionally, it satisfies the inequalities:

$$
\frac{1}{1+D}\eta(X) \le \rho(X) \le \eta(X),
$$

where D is the maximum degree of the graphing.

Definition 18. matroid polytope, is the convex hull of indicator vectors of subforests. The points of this polytope are called **fractional independent sets** for the cycle matroid of a graphing those are **minorizing** measures φ with $\varphi(\emptyset) = 0$ and $0 \le \alpha \le \varphi$. It is also a **maximal minorizing measure** if $\alpha(E) = \varphi(E)$. A minorizing measure is **extremal**, if it cannot be written as the average of two different minorizing measures.

Definition 19 (Hyperfinite graphing). We say that a graphing $\mathbf{G} = (J, \mathcal{B}, E, \lambda)$ is hyperfinite, if for every $\varepsilon > 0$ there is a Borel set $X \subseteq E$ with $\eta(X) \leq \varepsilon$ such that all connected components of $\mathbf{G}\setminus X$ are finite.

Lemma 20. Let $\mathbf{F} = (J, \mathcal{B}, E, \lambda)$ be a hyperfinite acyclic graphing. Then for all Borel sets $U \subseteq E$, we have $\rho(U) = \eta(U)/2.$

In particular, ρ is not only submodular, but modular, and hence, a measure.

Theorem 21. Let **G** be a hyperfinite graphing and $H = (J, F)$, a Borel measurable spanning subforest of **G**. Then

$$
\alpha(X) = \frac{1}{2}\eta_{\mathbf{G}}(X \cap F)
$$

defines an extremal maximal minorizing measure on the Borel subsets of E.

Theorem 22. If G_1, G_2, \ldots is a sequence of finite graphs with all degrees bounded by $D \geq 0$ locally converging to a graphing $\mathbf{G} = (J, \mathcal{B}, E, \lambda)$, then $\bar{\rho}(G_n) \to \bar{\rho}(\mathbf{G})$ as $n \to \infty$. Which $\bar{\rho}(\mathbf{G}) := \rho_{\mathbf{G}}(E(\mathbf{G}))$, is total rank.