
The Function-Inversion Problem

Juraj Belohorec

Key Concepts and Objectives

Main objective In 1980, Hellman introduced time-space tradeoffs as a tool for cryptanalysis and presented
a black-box preprocessing algorithm that inverts a function f : [N] → [N] using only S = Õ(N2/3) bits of
advice and online time T = Õ(N2/3). Is it possible to improve upon Hellman’s time-space trade-off?

Theorem 19 (Hellman). There exists a black-box algorithm for inverting permutations π : [N] → [N]
that, for any S, T ∈ Z>0 satisfying ST ≥ 2N⌈logN +1⌉, uses T queries and S bits of advice and is T -round
adaptive.

Algorithm

• There are at most N/(T + 1) cycles of length greater than T .

• For each such cycle, we store a sequence of “checkpoints” in the order they appear in the cycle, ensuring
that every point on the cycle is at a distance of at most T points from the previous checkpoint.

• If the i-th cycle has length i, then that cycle requires ⌈i/T ⌉ + 1 checkpoints to cover its first i − T
points and one checkpoint to cover the remaining i mod T points.

• In the worst case, if all cycles have length T + 1, we have N/(T + 1) cycles, each requiring two
checkpoints. This results in a total of 2N/(T + 1) checkpoints.

• Therefore, we can store these checkpoints as a list of lists using 2N⌈logN⌉/T bits. Additionally, we
add one extra bit to each checkpoint (at most 2N/T bits total) to indicate whether the checkpoint
belongs to the same cycle as the prior one.

In the online phase, given a point y ∈ [N] as input and the list of checkpoints as an advice string, we
perform the following steps:

• Set y0 = y.

• Iteratively compute yi+1 = π(yi) until either:

– yi = y, at which point we output yi−1 as the preimage of y, or

– yi is one of the stored checkpoints. In this case, set yi+1 to be the previous checkpoint in the list
on the same cycle and continue iterating.

Theorem 3 If an explicit operator Fn with n ∈ Z>0 has fan-in-two Boolean circuits of size O(n) and
depth O(log n), then for every ε > 0, this operator admits a non-adaptive systematic data structure of size
O(n log log n) and query complexity O(n).

Theorem 6. If, for some ε > 0, every family of strongly non-adaptive black-box algorithms for inverting
functions f : [N] → [N] that uses O(N) queries requires ω(N logN log logN) bits of advice, then there
exists an explicit operator that cannot be computed by fan-in-two Boolean circuits of size O(n) and depth
O(log n).

1

Definition (Multiparty pointer-jumping problem) In the pointer-jumping problem MPJpermN,k , there
are k computationally unbounded players, denoted P0, P1, . . . , Pk−1, and each has an input “written on her
forehead.”

The first player P0 has a point x ∈ [N] written on her forehead, the last player Pk−1 has a Boolean
mapping πk−1 : [N] → {0, 1} written on her forehead, and each remaining player Pi, for i = 1, . . . , k− 2, has
a permutation πi : [N] → [N] written on her forehead. Each player can see all k − 1 inputs except the one
written on her own forehead.

The goal of the players is to compute the value πk−1(πk−2(. . . π1(x) . . .)), which loosely corresponds to
“following a trail of pointers” defined by the permutations, starting from x. The players can communicate by
writing messages on a public blackboard. The communication complexity of a protocol is the total number
of bits written on the blackboard for a worst-case input.

Theorem 10. CC1(MPJpermN,k) ≤ O((Nk +N) logN).

Lemma 11. CC1(MPJpermN,k) ≤ CC1(ˆMPJ
perm

N,k) + ⌈logN⌉ .

Lemma 12. If there exists a (k − 2)-round adaptive algorithm for inverting permutations π : [N] → [N]

that uses advice S and time T , then CC1(ˆMPJ
perm

N,k) ≤ S + T ⌈logN⌉.

Definition (Systematic substring-search problem) We are given a bitstring of length N (the “text”)
and a bitstring of length P ≪ N (the “pattern”). If the pattern appears in the text, we must output an
index i ∈ [N] into the text at which the pattern begins. We take the pattern length to be P = Θ(logN).

An algorithm for systematic substring search is a two-part algorithm A = (A0, A1):

• The preprocessing algorithm A0 takes as input only the text, may perform arbitrary computation on
it, and then outputs an S-bit “index” into the text.

• The online algorithm A1 takes as input the index and the pattern, queries T bits of the text, and then
outputs the location of the pattern in the text, if one exists.

Theorem 14. For any integer N ∈ Z>0 and integral constant c > 2, if there is an algorithm for systematic
substring search on texts of length cN⌈logN⌉ with pattern length c⌈logN⌉ that uses an S-bit index and
reads T -bits of the text in its online phase, then there exists a black-box algorithm for inverting functions
f : [N] → [N] that uses S bits of advice and makes T online queries.

For any integer N ∈ Z>0, if there is a black-box algorithm for inverting functions f : [2N] → [2N] that
uses S bits of advice and T queries, then, for any integral constant c > 1, there exists an algorithm for
systematic substring search on texts of length N with pattern length c⌈logN⌉ that uses an Õ(S)-bit index
and reads Õ(T) bits of the text in its online phase.

2

