Delegating Computation: Interactive Proofs for Muggles

Authors: Shafi Goldwasser, Yael Tauman Kalai, Guy N. Rothblum Presenter: Kristýna Mašková

21.11.2024

Theorem 1 (Main Result) Let L be a language that can be computed by a family of $O(\log(S(n)))$ -space uniform boolean circuits of size S(n) and depth d(n). L has an interactive proof where:

- 1. The prover runs in time poly(S(n)). The verifier runs in time $n \cdot poly(d(n), \log S(n))$ and space $O(\log(S(n)))$. Moreover, if the verifier is given oracle access to the low-degree extension of its input, then its running time is only $poly(d(n), \log S(n))$.
- 2. The protocol has perfect completeness and soundness 1/2.
- 3. The protocol is public-coin, with communication complexity d(n)-polylog(S(n)).

Proposition 1 There exists a Turing machine that takes as input an extension field \mathbb{H} of $\mathbb{GF}[2]$, an extension field \mathbb{F} of \mathbb{H} , and an integer m. The machine runs in time $poly(|\mathbb{H}|, m)$ and space $O(\log(|\mathbb{H}|) + \log(m))$. It outputs the unique 2m-variate polynomial $\hat{\beta} : \mathbb{F}^m \times \mathbb{F}^m \to \mathbb{F}$ of degree $|\mathbb{H}| - 1$ in each variable (represented as an arithmetic circuit of degree $|\mathbb{H}| - 1$ in each variable), such that for every $(w_0, w_1, \ldots, w_{k-1}) \in \mathbb{F}^k$ with $k \leq |\mathbb{H}|^m$, and for every $z \in \mathbb{F}^m$,

$$\widetilde{W}(z) = \sum_{p \in \mathbb{H}^m} \widetilde{\beta}(z, p) \cdot W(p),$$

where $W : \mathbb{H}^m \to \mathbb{F}$ is the function corresponding to $(w_0, w_1, \ldots, w_{k-1})$, and $\widetilde{W} : \mathbb{F}^m \to \mathbb{F}$ is its low-degree extension (i.e., the unique extension of $W : \mathbb{H}^m \to \mathbb{F}$ of degree at most $|\mathbb{H}| - 1$ in each variable).

Moreover, $\hat{\beta}$ can be evaluated in time $poly(|\mathbb{H}|, m)$ and space $O(\log(|\mathbb{H}|) + \log(m))$. Namely, there exists a Turing machine with the above time and space bounds, that takes as input parameters $\mathbb{H}, \mathbb{F}, m$, and a pair $(z, p) \in \mathbb{F}^m \times \mathbb{F}^m$, and outputs $\hat{\beta}(z, p)$.

Claim 1 There exists a Turing machine that takes as input an extension field \mathbb{H} of $\mathbb{GF}[2]$, an extension field \mathbb{F} of \mathbb{H} , an integer m, a sequence $w = (w_0, w_1, \dots, w_{k-1}) \in \mathbb{F}^k$ such that $k \leq |\mathbb{H}|^m$, and a coordinate $z \in \mathbb{F}^m$. It outputs the value $\widetilde{W}(z)$, where \widetilde{W} is the unique low-degree extension of w (with respect to $\mathbb{H}, \mathbb{F}, m$). The machine's running time is $|\mathbb{H}|^m \cdot poly(|\mathbb{H}|, m)$ and its space usage is $O(m \cdot \log(|\mathbb{H}|))$.

Lemma 1 (Schwartz-Zippel Lemma) Let \mathbb{F} be a field and $f(x_1, x_2, \ldots, x_n)$ a nonzero polynomial of degree d. If r_1, r_2, \ldots, r_n are chosen independently and uniformly at random from \mathbb{F} , then

$$\Pr[f(r_1, r_2, \dots, r_n) = 0] \le \frac{d}{|S|}.$$