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1 Introduction

Theorem 1 (Helly’s Theorem, 1913/1921) Let F be a family of convex

sets in Rd such that any d+1 elements K1, ...,Kd+1 of F intersect:
⋂d+1

i=1 Ki ̸= ∅.
Then

⋂
F ̸= ∅, that is, all sets in F intersect.

The number d+1 in the Theorem is optimal, but these strengthenings exist:

Theorem 2 (Colorful Helly Theorem, Lovász ’82) Let F1, ...,Fd+1 be fam-
ilies of convex sets in Rd such that every transversal K1 ∈ F1, ...,Kd+1 ∈ Fd+1

intersects. Then there is i ∈ [d+ 1] such that
⋂

Fi ̸= ∅.

Theorem 3 (Quantitative Helly Theorem, Bárány, Katchalski, Pach ’82)
There exists a constant c > 0 such that for any family F of convex sets in Rd

such that any 2d elements K1, ...,K2d of F intersect in a set of volume at least
1, i.e.

Vol

(
2d⋂
i=1

Ki

)
≥ 1 ⇒ Vol

(⋂
F
)
≥ v(d) > 0.

That means all sets intersect in a set of volume at least v(d).

Again, the number 2d cannot be reduced and the best possible function v(d)

is known to be between (cd)−
d
2 and (cd)−

3d
2 for some constant c. (Naszódi ’16;

Brazitikos ’17).

Theorem 4 (Fractional Helly Theorem, Katchalski, Liu ’79) Let F be
a family of n convex sets in Rd and α > 0 such that at least α

(
n

d+1

)
choices

of d+ 1 elements K1, ...,Kd+1 of F intersect, i.e.
⋂d+1

i=1 Ki ̸= ∅
Then there exists β = β(d, α), such that at least βn sets of F intersect, that

is m ≥ βn elements K1, ...,Km of F exist such that
⋂m

i=1 Ki ̸= ∅.

The best function for β is β = 1− (1− α)
1

d+1 (Kalai ’84).
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Theorem 5 (Quantitative Fractional Helly Theorem) For all d ∈ N, there
exists v(d) > 0, and for every α ∈ (0, 1), there exists β(d, α) > 0, such that the
following holds:
Let F be a family of n convex sets in Rd such that at least α

(
n

d+1

)
of the (d+1)-

tuples of members of F have an intersection of volume at least 1. Then one can
find at least βn sets in F whose intersection has volume at least v(d).

This is what we will prove. The values of β and v are not optimized but the
proof gives v(d) = 2−22

...

, where the tower is of height O(d).

2 Prerequisites

The first published proof of Helly’s Theorem is due to Radon and uses this fact:

Theorem 6 (Radon’s Theorem, 1921) Any collection of d+2 vectors x1, ..., xd+2

in Rd admits a partition X1 ∪X2 into two parts, whose convex hulls intersect:
conv(xi : xi ∈ X1) ∩ conv(xi : xi ∈ X2) ̸= ∅.

The set of convex compact sets of non-empty interior in Rd is also called set
of convex bodies K(Rd). We can give it the structure of a metric space using
the following definition:

Definition 1 The Hausdorff distance of two sets X and Y in a metric space
(M,d) is defined as dH(X,Y ) = max(supx∈X d(x, Y ), supy∈Y d(y,X)), where
d(x, Y ) := infy∈Y d(x, y).

The set of compact sets in some metric space (M,d) equipped with this metric
becomes a metric space itself. This space is compact if M is compact. We will
also need the following containment theorems of Convex Geometry:

Theorem 7 (John’s Ellipsoid Theorem, ’48) Any convex set K ⊂ Rd ad-
mits a unique ellipsoid E of minimal volume containing K and if E is centered
at 0, then 1

dE ⊂ K, that is shrinking the ellipsoid by a factor of 1
d towards its

center gives an ellipsoid contained in K.

Theorem 8 (Simplex containment Theorem, Galicer, Merzbacher, Pinasco ’19)

Let K be a convex body in Rd. Then there exists a simplex of volume O(d)
d
2 ·

Vol(K) containing K.

Lemma 1 N hyperplanes cut Rd into at most
∑d

k=0

(
N
k

)
≤ Nd cells.

Further we need some results from extremal hypergraph theory:

Theorem 9 (h-partite Ramsey theorem, follows from Erdős ’64) For all
h,m, q ∈ N,∃M ∈ N : Every q-coloring of the edges of the complete h-partite
h-uniform hypergraph Lh(M) contains a monochromatic copy of Lh(m).

Lemma 2 (Hypergraph Saturation, Erdős, Simonovits ’83) For all h,m ∈
N, α > 0∃γ > 0 : Every h-uniform hypergraph on a sufficient large number n of
vertices with at least α

(
n
h

)
edges contains at least γnhm copies of Lh(m).
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