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1 Introduction

Theorem 1 (Helly’s Theorem, 1913/1921) Let F be a family of convex
sets in R? such that any d+1 elements K1, ..., K41 of F intersect: ﬂfill K; #0.
Then (\F # 0, that is, all sets in F intersect.

The number d+1 in the Theorem is optimal, but these strengthenings exist:

Theorem 2 (Colorful Helly Theorem, Lovasz ’82) Let Fi, ..., Fqr1 be fam-
ilies of convex sets in RY such that every transversal Ky € Fi, ..., Kgi1 € Fas1
intersects. Then there is i € [d + 1] such that (F; # 0.

Theorem 3 (Quantitative Helly Theorem, Barany, Katchalski, Pach ’82)
There exists a constant ¢ > 0 such that for any family F of convexr sets in RY
such that any 2d elements K1, ..., Kog of F intersect in a set of volume at least

1, i.e.

2d
Vol (ﬂ KZ-> > 1= Vol (ﬂf) > v(d) > 0.
=1

That means all sets intersect in a set of volume at least v(d).

Again, the number 2d cannot be reduced and the best possible function v(d)

is known to be between (cd)~2 and (cd)~% for some constant c¢. (Naszédi '16;
Brazitikos ’17).

Theorem 4 (Fractional Helly Theorem, Katchalski, Liu *79) Let F be
a family of n convex sets in R? and o > 0 such that at least a( n ) choices

d+1
of d+1 elements K1, ..., Kqy1 of F intersect, i.e. ﬂfill K; #0
Then there exists f = p(d, «), such that at least Sn sets of F intersect, that

is m > fBn elements K, ..., Ky, of F exist such that (-, K; # 0.

The best function for fis f=1— (1 — a)ﬁ (Kalai ’84).



Theorem 5 (Quantitative Fractional Helly Theorem) Foralld € N, there
exists v(d) > 0, and for every o € (0,1), there exists 5(d, ) > 0, such that the
following holds:

Let F be a family of n convex sets in R% such that at least O‘(dil) of the (d+1)-
tuples of members of F have an intersection of volume at least 1. Then one can

find at least Bn sets in F whose intersection has volume at least v(d).

This is what we Wil21___prove. The values of 5 and v are not optimized but the
proof gives v(d) =272 | where the tower is of height O(d).

2 Prerequisites

The first published proof of Helly’s Theorem is due to Radon and uses this fact:

Theorem 6 (Radon’s Theorem, 1921) Any collection of d+2 vectors x1, ..., Xa42
in R? admits a partition X1 U Xy into two parts, whose convex hulls intersect:
conv(z; : z; € X1) Nconv(x; : z; € Xo) # (.

The set of convex compact sets of non-empty interior in R? is also called set
of convex bodies K(R?). We can give it the structure of a metric space using
the following definition:

Definition 1 The Hausdorff distance of two sets X and Y in a metric space
(M,d) is defined as dy(X,Y) = max(sup,cy d(z,Y),sup,cy d(y, X)), where
d(z,Y) = infycy d(z,y).

The set of compact sets in some metric space (M, d) equipped with this metric
becomes a metric space itself. This space is compact if M is compact. We will
also need the following containment theorems of Convex Geometry:

Theorem 7 (John’s Ellipsoid Theorem, ’48) Any conver set K C R¢ ad-
mits a unique ellipsoid E of minimal volume containing K and if E is centered
at 0, then éE C K, that is shrinking the ellipsoid by a factor ofé towards its
center gives an ellipsoid contained in K.

Theorem 8 (Simplex containment Theorem, Galicer, Merzbacher, Pinasco ’19)
d
2 .

Let K be a convex body in R%. Then there exists a simplex of volume O(d)
Vol(K) containing K.

Lemma 1 N hyperplanes cut R% into at most ZZ:O (JZ) < N9 cells.
Further we need some results from extremal hypergraph theory:

Theorem 9 (h-partite Ramsey theorem, follows from Erdés ’64) For all
h,m,q € N,3IM € N : Every q-coloring of the edges of the complete h-partite
h-uniform hypergraph Ly (M) contains a monochromatic copy of Ly(m).

Lemma 2 (Hypergraph Saturation, Erd8s, Simonovits ’83) For allh,m €
N, > 03y > 0: Every h-uniform hypergraph on a sufficient large number n of
vertices with at least o)) edges contains at least yn"™ copies of Ly (m).



