The Quantitative Fractional Helly Theorem

Presenter: Felix Schröder Authors: Nóra Frankl, Attila Jung and István Tomon

24 October 2024

1 Introduction

Theorem 1 (Helly's Theorem, 1913/1921) Let F be a family of convex sets in \mathbb{R}^d such that any $d+1$ elements $K_1, ..., K_{d+1}$ of $\mathcal F$ intersect: $\bigcap_{i=1}^{d+1} K_i \neq \emptyset$. Then $\bigcap \mathcal{F} \neq \emptyset$, that is, all sets in $\mathcal F$ intersect.

The number $d+1$ in the Theorem is optimal, but these strengthenings exist:

Theorem 2 (Colorful Helly Theorem, Lovász '82) Let $\mathcal{F}_1, ..., \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d such that every transversal $K_1 \in \mathcal{F}_1, ..., K_{d+1} \in \mathcal{F}_{d+1}$ intersects. Then there is $i \in [d+1]$ such that $\bigcap \mathcal{F}_i \neq \emptyset$.

Theorem 3 (Quantitative Helly Theorem, Bárány, Katchalski, Pach '82) There exists a constant $c > 0$ such that for any family F of convex sets in \mathbb{R}^d such that any 2d elements $K_1, ..., K_{2d}$ of $\mathcal F$ intersect in a set of volume at least 1, i.e.

$$
\text{Vol}\left(\bigcap_{i=1}^{2d} K_i\right) \ge 1 \Rightarrow \text{Vol}\left(\bigcap \mathcal{F}\right) \ge v(d) > 0.
$$

That means all sets intersect in a set of volume at least $v(d)$.

Again, the number 2d cannot be reduced and the best possible function $v(d)$ is known to be between $(cd)^{-\frac{d}{2}}$ and $(cd)^{-\frac{3d}{2}}$ for some constant c. (Naszódi '16; Brazitikos '17).

Theorem 4 (Fractional Helly Theorem, Katchalski, Liu '79) Let $\mathcal F$ be a family of n convex sets in \mathbb{R}^d and $\alpha > 0$ such that at least $\alpha {n \choose d+1}$ choices of $d+1$ elements $K_1, ..., K_{d+1}$ of $\mathcal F$ intersect, i.e. $\bigcap_{i=1}^{d+1} K_i \neq \emptyset$

Then there exists $\beta = \beta(d, \alpha)$, such that at least $\beta \overline{n}$ sets of F intersect, that is $m \geq \beta n$ elements $K_1, ..., K_m$ of $\mathcal F$ exist such that $\bigcap_{i=1}^m K_i \neq \emptyset$.

The best function for β is $\beta = 1 - (1 - \alpha)^{\frac{1}{d+1}}$ (Kalai '84).

Theorem 5 (Quantitative Fractional Helly Theorem) For all $d \in \mathbb{N}$, there exists $v(d) > 0$, and for every $\alpha \in (0,1)$, there exists $\beta(d,\alpha) > 0$, such that the following holds:

Let F be a family of n convex sets in \mathbb{R}^d such that at least $\alpha {n \choose d+1}$ of the $(d+1)$ tuples of members of $\mathcal F$ have an intersection of volume at least 1. Then one can find at least βn sets in F whose intersection has volume at least $v(d)$.

This is what we will prove. The values of β and v are not optimized but the proof gives $v(d) = 2^{-2^{2^{2^{2}}}}$, where the tower is of height $\mathcal{O}(d)$.

2 Prerequisites

The first published proof of Helly's Theorem is due to Radon and uses this fact:

Theorem 6 (Radon's Theorem, 1921) Any collection of $d+2$ vectors $x_1, ..., x_{d+2}$ in \mathbb{R}^d admits a partition $X_1 \cup X_2$ into two parts, whose convex hulls intersect: conv $(x_i : x_i \in X_1) \cap \text{conv}(x_i : x_i \in X_2) \neq \emptyset$.

The set of convex compact sets of non-empty interior in \mathbb{R}^d is also called set of convex bodies $\mathcal{K}(\mathbb{R}^d)$. We can give it the structure of a metric space using the following definition:

Definition 1 The Hausdorff distance of two sets X and Y in a metric space (M, d) is defined as $d_H(X, Y) = \max(\sup_{x \in X} d(x, Y), \sup_{y \in Y} d(y, X)),$ where $d(x, Y) := \inf_{y \in Y} d(x, y).$

The set of compact sets in some metric space (M, d) equipped with this metric becomes a metric space itself. This space is compact if M is compact. We will also need the following containment theorems of Convex Geometry:

Theorem 7 (John's Ellipsoid Theorem, '48) Any convex set $K \subset \mathbb{R}^d$ admits a unique ellipsoid E of minimal volume containing K and if E is centered at 0, then $\frac{1}{d}E \subset K$, that is shrinking the ellipsoid by a factor of $\frac{1}{d}$ towards its center gives an ellipsoid contained in K.

Theorem 8 (Simplex containment Theorem, Galicer, Merzbacher, Pinasco '19) Let K be a convex body in \mathbb{R}^d . Then there exists a simplex of volume $\mathcal{O}(d)^{\frac{d}{2}}$. $Vol(K)$ containing K.

Lemma 1 N hyperplanes cut \mathbb{R}^d into at most $\sum_{k=0}^d {N \choose k} \leq N^d$ cells.

Further we need some results from extremal hypergraph theory:

Theorem 9 (h -partite Ramsey theorem, follows from Erdős '64) For all $h, m, q \in \mathbb{N}, \exists M \in \mathbb{N} : Every q-coloring of the edges of the complete h-partite$ h-uniform hypergraph $L_h(M)$ contains a monochromatic copy of $L_h(m)$.

Lemma 2 (Hypergraph Saturation, Erdős, Simonovits '83) For all $h, m \in$ $\mathbb{N}, \alpha > 0 \exists \gamma > 0$: Every h-uniform hypergraph on a sufficient large number n of vertices with at least $\alpha_n^{(n)}$ edges contains at least γn^{hm} copies of $L_h(m)$.